Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (3): 614-625    DOI: 10.7522/j.issn.1000-0534.2017.00063
论文     
太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究
谢琰1,2, 文军1,3, 刘蓉1, 王欣1, 贾东于1
1. 中国科学院西北生态环境资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049;
3. 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室, 四川 成都 610225
The Role of Solar Radiation and Water Vapor Pressure Deficit on Controlling Latent Heat Flux Density over the Alpine Wetland of the Source Region of the Yellow River
XIE Yan1,2, WEN Jun1,3, LIU Rong1, WANG Xin1, JIA Dongyu1
1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, Sichuan, China
 全文: PDF 
摘要: 利用2014年6月1日至8月31日中国科学院麻多黄河源气候与环境综合观测站(下称麻多站)陆面过程观测试验资料,将大气和地表因素之和作为环境因子探讨其对潜热通量的影响,分析了太阳辐射和水汽压差对黄河源区高寒湿地下垫面潜热通量的影响,并对其进行了定量化评估(即控制参量)。结果表明:(1)太阳辐射和水汽压差对潜热通量的相对大气因素控制平均为0.98和0.02,即太阳辐射是影响潜热通量的相对大气因素控制的主要因子,水汽压差的影响可忽略。(2)太阳辐射和水汽压差对潜热通量的相对地表因素控制平均为0.12和-0.31,前者早晚大,中午小,后者绝对值早晚小,中午大。(3)太阳辐射对潜热通量的绝对总控制平均为0.22,相对总控制平均为1.10。水汽压差的绝对总控制平均为-0.06 W·m-2·Pa-1,相对总控制平均为-0.29。(4)太阳辐射主要是通过直接作用(大气因素)影响潜热通量;而水汽压差则主要通过改变湿地地表阻抗的间接作用(地表因素)影响潜热通量。(5)高寒湿地下垫面地-气退耦因子(Ω)平均为0.38,表明高寒湿地与大气间的耦合程度较差,实际情况亦是如此,太阳辐射是影响高寒湿地下垫面潜热通量的主要因子。本研究为气候变化背景下的潜热通量参数化及其蒸散发研究开辟一条新的研究思路。
关键词: 高寒湿地黄河源区潜热通量太阳辐射水汽压差    
Abstract: As the alpine wetland underlying surface is moist and sensitive to climate change, quantitative assessments of environmental factors on the influence of latent heat flux over there have important scientific significance. Environmental factors on the influence of latent heat flux are potential to be expressed as sums of the atmosphere and surface factors. By using the datasets collected from the land surface process field experiment which was conducted in the source region of the Yellow River from June 1 to August 31, 2014, the characteristics of solar radiation and water vapour pressure deficit in controlling latent heat flux density were analyzed, and further assessment was evaluated by a defined controlling factor. The main results are as follows:(1) The average values of relative atmospheric controlling factors on latent heat flux density exercised by solar radiation and water vapour pressure deficit are 0.98 and 0.02. Relative atmospheric controlling factor on latent heat flux density is mainly exercised by solar radiation, and the role of water vapour pressure deficit is only marginal. (2) The average values of relative surface controlling factor over latent heat flux density exercised by solar radiation and water vapour pressure deficit are 0.12 and -0.31. The former is larger in the morning and evening, and smaller in the noon. The absolute value of the latter is smaller in the morning and evening, and larger in the noon. (3) The average values of absolute total controlling over the latent heat flux density exercised by solar radiation and water vapour pressure deficit are 0.22 and -0.06 W·m-2·Pa-1. The average values of relative total control are 1.10 and -0.29. (4) Solar radiation controls the latent heat flux mainly through a direct effect (atmospheric factor). While the water vapour pressure deficit controls latent heat flux mainly through the indirect effect of altering surface resistance (surface factor). (5) The average value of the decoupling factor over the alpine wetland is 0.38. It implied that the coupling between the alpine wetland and atmospheric is low. It is of practical, the solar radiation is the main factor to control the latent heat flux over alpine wetland. This study provides a new research approach for the study of the parameterization of latent heat flux and evaporation under the context of global climate change.
Key words: Alpine wetland    source region of the Yellow River    latent heat flux    sun radiation    water vapour pressure deficit
收稿日期: 2017-03-29 出版日期: 2018-06-24
ZTFLH:  P426.2  
基金资助: 国家自然科学基金项目(41530529,41375022,91737103)
通讯作者: 文军(1964),男,甘肃定西人,教授,主要从事陆面过程与气候变化方面的研究.E-mail:jwen@lzb.ac.cn     E-mail: jwen@lzb.ac.cn
作者简介: 谢琰(1991),女,四川宜宾人,博士研究生,从事陆面过程与气候变化研究.E-mail:yxie@lzb.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢琰
文军
刘蓉
王欣
贾东于

引用本文:

谢琰, 文军, 刘蓉, 王欣, 贾东于. 太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究[J]. 高原气象, 2018, 37(3): 614-625.

XIE Yan, WEN Jun, LIU Rong, WANG Xin, JIA Dongyu. The Role of Solar Radiation and Water Vapor Pressure Deficit on Controlling Latent Heat Flux Density over the Alpine Wetland of the Source Region of the Yellow River. Plateau Meteorology, 2018, 37(3): 614-625.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00063        http://www.gyqx.ac.cn/CN/Y2018/V37/I3/614

Cienciala E, Kucera J, Lindroth A, 1997.Canopy transpiration from a boreal forest in sweden during a dry year[J].Agricultural and Forest Meteorology, 86:157-167.
Jacobs C M J, De Bruin H A R, 1992.The sensitivity of regional transpiration to land-surface characteristics:Significance of feedback[J].J Climate, 5(7):683-698.
Jarvis P G, McNaughton K G, 1986.Stomatal control of transpiration:Scaling up from leaf to region[J].Advances in Ecological Research, 15:1-49.
Kellner E, 2001.Surface energy fluxes and control of evapotranspiration from a Swedish Sphagnum mire[J].Agricultural and Forest Meteorology, 110(2):101-123.
Mackay D S, Ahl D E, Ewers B E, et al, 2003.Physiological tradeoffs in the parameterization of a model of canopy transpiration[J].Adv Water Resour, 26:79-194.
Mahrt L, Vickers D, 2005.Boundary-Layer adjustment over small scale changes of surface heat flux[J].Boundary-Layer Meteor, 116(2):313-330.
Monteith J L, 1973.Principles of environmental physics[M].London:Edward Arnold, 241.
Oncley S P, Foken T, Vogt R, et al, 2007.The energy balance experiment EBEX-2000.Part I:Overview and energy balance[J].Bound-Layer Meteor, 123(1):1-28.
Steduto P, Hsiao T C, 1988.Maize canopies under two soil water regimes:Ⅲ.Variation in coupling with the atmosphere and the role of leaf area index[J].Agricultural and Forest Meteorology, 89(3/4):201-213.
Stewart J B, 1988.Modelling surface conductance of pine forest[J].Agricultural and Forest Meteorology, 43:19-35.
Trenberth K E, Caron J M, Stepaniak D P, 2001.The atmospheric energy budget and implications for surface fluxes and ocean heat transports[J].Climate Dyn, 17(4):259-276.
Wang Q G, Kellomaki S, 2005.Role of solar radiation and water vapour pressure deficit in controlling latent heat flux density in a cots pine forest[J].Bound-Layer Meteor, 115:131-149.
Wever L A, Flanagan L B, Carlson P J, 2002.Seasonal and interannual variation in evapotranspiration, energy balance, and surface conductance in a northern temperate grassland[J].Agricultural and Forest Meteorology, 112(1):31-49.
Zhu C M, Lettenmaier D P, 2007.Long-term climate and derived surface hydrology and energy flux data for Mexico:19252004[J].J Climate, 20(9):1936-1946.
鲍艳, 左洪超, 吕世华, 2004.干旱区陆面过程参数改进对气候模拟结果的影响[J].高原气象, 23(2):220-227.Bao Y, Zuo H C, Lü S H, 2004.The effect of improved land surface process parameters in arid area on climatic simulation in GCM[J].Plateau Meteor, 23(2):220-227.
陈金雷, 文军, 王欣, 等, 2017.黄河源高寒湿地-大气间暖季水热交换特征及关键影响参数研究[J].大气科学, 41(2):302-312.Chen J L, Wen J, Wang X, et al, 2016.The characteristics of water and heat exchange and its crucial influencing factors over alpine wetland during warm season in the source region of the Yellow River[J], Chinese J Atmos Sci, 41(2):302-312.
陈渭民, 高庆先, 洪刚, 1997.由GMS卫星资料获取我国夏季地表辐射收支[J].大气科学, 21(2):238-246.Cheng W M, Gao Q X, Hong G,.1997.Estimating surface radiation budgets over China in summer from GMS satellite date[J].Chinese J Atmos Sci, 21(2):238-246.
丁日升, 康绍忠, 张彦群, 等, 2014.干旱内陆区玉米田水热通量特征及主控因子研究[J].水利学报, 3(45):312-319.Ding R S, Kang S Z, Zhang Y Q, et al, 2014.Characteristics of water vapor and heat fluxes and the controlling factors over an maize field in the arid inland region[J].Journal of Hydraulic Engineering, 3(45):312-319.
郭家选, 梅旭荣, 卢志光, 等, 2004.测定农田蒸散的涡度相关技术[J].中国农业科学, 37(8):1172-1176.Guo J X, Mei X R, Lu Z G, et al, 2004.Field evapotranspiration measurement based on eddy covariance technology[J].Scientia Agricultura Sinica, 37(8):1172-1176.
贺俊杰, 2014.典型草原区草地潜热通量特征[J].中国农学通报, 30(26):195-199.He J J, 2014.Characteristic of latent heat flux in typical steppe[J].Chinese Agricultural Science Bulletin, 30(26):195-199.
胡隐樵, 1994.河实验(HEIFE) 能量平衡和水汽输送研究进展[J].地球科学进展, 9(4):32-34.Hu Y Q, 1994.Research advance about the energy budget and transportation of water vapour in the HEIFE area[J].Adv Earth Sci, 9(4):32-34.
贾东于, 文军, 马耀明, 等, 2017.植被对黄河源区水热交换影响的研究[J].高原气象, 36(2):424-435.Jia D Y, Wen J, Ma Y M, et al, 2017.Impacts of vegetation on water and heat exchanges in the source region of Yellow River[J].Plateau Meteor, 36(2):424-435.DOI:10.7522/j.issn.1000-0534.2016.00044.
李凤霞, 常国刚, 肖建设, 等, 2009.黄河源区湿地变化与气候变化的关系研究[J].自然资源学报, 24(4):683-690.Li F X, Chang G G, Xiao J S, et al, 2009.Relationship between wetlands changes and climate change in the Yellow River source region[J].J Natural Resour, 24(4):683-690.
李红梅, 李林, 张金旭, 等, 2012.21世纪前中期三江源地区极端气候事件变化趋势分析[J].冰川冻土, 34(6):1403-1408.Li H M, Li L, Zhang J X, et al, 2012.Change in extreme climatic events over the sources of the three rivers in the prometaphase 21st century[J].Journal of Glaciology and Geocryology, 34(6):1403-1408.
李袆君, 许振柱, 王云龙, 等, 2007.玉米农田水热通量动态与能量闭合分析[J].植物生态学报, 31(6):1132-1144.Li Y J, Xu Z Z, Wang Y L, et al, 2007.Latent and sensible heat fluxes and energy balance in a maize agroecosystem[J].Journal of Plant Ecology, 31(6):1132-1144.
李祎君, 2015.雨养玉米农田水热交换的环境控制机理研究[J].气候与环境研究, 20 (1):71-79.Li Y J, 2015.Environmental controls on water and heat exchanges over rainfed maize cropland in northeast China[J].Climatic Environ Res, 20 (1):71-79.
李英年, 师生波, 曹广民, 等, 2000.祁连山海北高寒草甸地区微气候特征的观测研究[J].高原气象, 19(4):512-519.Li Y N, Shi S B, Cao G M, et al, 2000.The observational studies on characteristics of microclimate in Haibei alpine meadow regions of Qi-Lian Mountains[J].Plateau Meteor, 19(4)):512-519.
罗琪, 文军, 王欣, 等, 2017.黄河源高寒湿地-大气间水热和碳交换通量日变化特征的观测分析[J].高原气象, 36(3):667-674.Luo Q, Wen J, Wang X, et al, 2017.Analysis of the diurnal characteristics of water and heat & CO2 exchanges at the alpine wetland in the source region of the Yellow River[J].Plateau Meteor, 36(3):667-674.DOI:10.7522/j.issn.1000-0534.2016.00062.
谭鹏, 2014.湿地保护与退耕还湿的重要性探讨[J].资源节约与环保, (3):142-143.Tan P, 2014.Discuss the importance of wetland protection and reverting cultivated land to wetland[J].Resources Economization & Environmental Protection, (3):142-143.
王修信, 刘馨, 陈声海, 等, 2008.半干旱地区草地水热通量与环境因素及相关性研究[J].应用基础与工程科学学报, 16(5):770-777.Wang X X, Liu X, Chen S H, et al, 2008.Correlation analysis of water and heat fluxes with environmental variables over lawn in semi-arid area[J].Journal Of Basic Science and Engineering, 16(5):770-777.
于文颖, 周广胜, 迟道才, 等, 2008.盘锦湿地芦苇(Phragmitescommunis)群落蒸发散主导影响因子[J].生态学报, 28(9):4594-4601.Yu W Y, Zhou G S, Chi D C, et al, 2008.Evapotranspiration of phragmitescommunis community in Panjin wetland and its controlling factors[J].Acta Ecologica Sinica, 28(9):4594-4601.
张海宏, 周秉荣, 肖宏斌, 2015.高寒草甸和高寒湿地土壤水热特征比较[J].干旱气象, 33(5):783-789.Zhang H H, Zhou B R, Xiao H B, 2015.Comparison of soil moisture and heat features between alpine meadow and alpine wetland[J].J Arid Meteor, 33(5):783-789.
张强, 曹晓彦, 2003.敦煌地区荒漠戈壁地表热量和辐射平衡特征的研究[J].大气科学, 27(2):245-254.Zhang Q, Cao X Y, 2003.The influence of synoptic conditions on the averaged surface heat and radiation budget energy over desert or gobi[J].Chinese J Atmos Sci, 27(2):245-254.
[1] 郭晨露, 马耀明, 马伟强, 张烺, 韩存博, 孟纯纯, 徐超. 青藏高原珠峰地区戈壁下垫面上实际蒸散发量和蒸发皿蒸发量的关系研究[J]. 高原气象, 2017, 36(1): 79-86.
[2] 王宁, 贾立, 李占胜, 李娜娜, 胡光成. 非参数化蒸散发估算方法在黑河流域的适用性分析[J]. 高原气象, 2016, 35(1): 118-128.
[3] 杨光超, 朱忠礼, 谭磊, 刘绍民, 徐自为, 柏军华, 肖青. 怀来地区蒸渗仪测定玉米田蒸散发分析[J]. 高原气象, 2015, 34(4): 1095-1106.
[4] 卢萍, 李跃清, 郑伟鹏, 李英. 影响华南持续性强降水的西南涡分析和数值模拟[J]. , 2014, 33(6): 1457-1467.
[5] 刘波, 马柱国, 丁裕国. 中国北方近45年蒸发变化的特征及与环境的关系[J]. 高原气象, 2006, 25(5): 840-848.
[6] 马耀明, 戴有学, 马伟强, 李茂善, 王介民, 文军, 孙方林. 干旱半干旱区非均匀地表区域能量通量的卫星遥感参数化[J]. 高原气象, 2004, 23(2): 139-146.
[7] 马耀明, 王介民. 非均匀陆面上区域蒸发(散)研究概况[J]. 高原气象, 1997, 16(4): 446-452.
[8] 吴敬之, 王尧奇, 高洪春. 河西地区黑河流域绿洲蒸发力特征及其计算方法[J]. 高原气象, 1994, 13(3): 377-381.