Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (5): 1254-1263    DOI: 10.7522/j.issn.1000-0534.2018.00029
论文     
近30年江淮流域夏季年代际干旱特征及其与欧亚西风环流异常的关系
刘诗梦1,2, 张杰1, 于涵1,3
1. 气象灾害预报预警与评估协同创新中心/气象灾害省部共建教育部重点实验室, 南京信息工程大学, 江苏 南京 210044;
2. 内蒙古自治区气候中心, 内蒙古 呼和浩特 010000;
3. 辽阳市气象局, 辽宁 辽阳 111000
Decadal Summer Drought Characteristics over Yangtze-Huaihe River Basin in Recent 30 Years Associated with Abnormal Eurasian Westerly Circulation
LIU Shimeng1,2, ZHANG Jie1, YU Han1,3
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
2. Climate center of Inner Mongolia autonomous region, Hohhot 010000, Inner Mongolia, China;
3. Lioaning Meteorological Bureau, Shenyang 111000, Liaoning, China
 全文: PDF  HTML
摘要: 由于在夏季影响中国江淮流域降水的主要行星尺度系统在7月中旬发生改变,因此利用中国北方501个观测站点降水资料、ECMWF再分析资料及NOAA海温数据分析了6月1日至7月15日(梅雨期)和7月16日至8月31日(伏旱期)两个时段江淮流域干旱的时空特征和年代际极端干旱年份时的大气环流异常特征及其可能原因。结果表明,江淮流域在夏季梅雨期和伏旱期两个时段里均有变干趋势;梅雨期200 hPa东欧关键区的能量向东频散,激发出欧亚型(EU)波列,在我国北方辐合,促使江淮流域上空反气旋式异常环流加强,有利于该地干旱的维持和发展。伏旱期200 hPa高度上北大西洋关键区波能沿EU路径东传,叠加我国北方来自下垫面强迫的能量后在高空辐散,使蒙古上空低压槽减弱,同样有利于干旱的维持;该结果反映了江淮流域干旱的年代际特征及其部分成因,为多尺度干旱机理的探讨及干旱气候预估提供依据。
关键词: 江淮流域干旱罗斯贝波太平洋年代际振荡欧亚遥相关    
Abstract: As the main planetary system affecting the precipitation over Yangtze-Huaihe river basin in summer changed in mid-July, this paper investigated the temporal and spatial characteristics of arid in Yangtze-Huaihe river basin and the characteristics of atmospheric abnormal circulation in interdecadal extreme drought years and their possible causes from June 1 to July 15(Meiyu period) and July 16 to August 31(drought period). This research based on daily precipitation data from 501 stations in northern China, the reanalyze data from European Centre for Medium-Range Weather Forecasts (ECMWF) and the sea temperature data from national oceanic and atmospheric administration (NOAA). The results indicate that on the spatial scale, the number of rainless day in the northwest of the Yangtze-Huaihe river basin in the Meiyu period is more than that in the southeast, while there is no significant difference in the number of rainless day in the entire Yangtze-Huaihe river basin during the drought period. On the time scale, the drought in the Jianghuai basin was more severe than in other periods at the end of the 20th century, and there were dry trends during the two periods. The drought in the Yangtze-Huaihe river basin is related to the Eurasian teleconnection in the middle and high latitudes. During the Meiyu period, there is a northeast-southwest anticyclone anomaly in Mongolia with a strong intensity range. Therefore, the Yangtze-Huaihe river basin is affected by the northerly wind and the subsidence movement is maintained, providing a circulation background that is easy to form a drought in this region. During the drought period, there is a positive anomaly at 500 hPa over the eastern Mongolia, which weakens the East Asian trough and causes the west Pacific subtropical high to move northward. This area is controlled by descending airstream, resulting in aridity. In the Meiyu period the 200 hPa wave energy from Eastern Europe propagates eastward and converges in the north of China, which intensifies abnormal anticyclone. Such phenomenon is conducive to the maintenance and development of drought in the Yangtze-Huaihe river basin. During drought period, the 200 hPa origins of wave energy are the North Atlantic and the north of China. Wave energy from North Atlantic propagates eastward, with a small amount transported to East Asia. In the northern China the energy diverges after combining with energy wave forced by surface. The weakened trough in Mongolia leads to the formation of anti-cyclonic abnormal center, which is conducive to the maintenance of drought. The results present the interdecadal characteristics and factors of drought in the Yangtze-Huaihe river basin to some extent, and provide the basis for the study of multi-scale drought mechanism and arid climate prediction.
Key words: Drought in the Yangtze-Huaihe River Basin    Rossby wave    Pacific decadal oscillation    Eurasian teleconnection
收稿日期: 2017-09-20 出版日期: 2018-10-19
:  P467  
基金资助: 国家重点研发计划项目(2016YFA0600702);国家自然科学基金项目(41630426,91437107)
通讯作者: 张杰(1974-),女,江苏省南京人,教授,主要从事陆气相互作用、气候模拟和定量遥感.E-mail:zhangj@nuist.edu.cn     E-mail: zhangj@nuist.edu.cn
作者简介: 刘诗梦(1992-),女,内蒙古包头人,硕士研究生,主要从事气候模拟与陆气相互作用的研究.E-mail:834668767@qq.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘诗梦
张杰
于涵

引用本文:

刘诗梦, 张杰, 于涵. 近30年江淮流域夏季年代际干旱特征及其与欧亚西风环流异常的关系[J]. 高原气象, 2018, 37(5): 1254-1263.

LIU Shimeng, ZHANG Jie, YU Han. Decadal Summer Drought Characteristics over Yangtze-Huaihe River Basin in Recent 30 Years Associated with Abnormal Eurasian Westerly Circulation. Plateau Meteorology, 2018, 37(5): 1254-1263.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00029        http://www.gyqx.ac.cn/CN/Y2018/V37/I5/1254

Frich P, Alexander L V, Dellamarta P, et al, 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century[J]. Climate Res, 19(3):267-269.
Hoskins B J, Karoly D J, 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing[J]. J Atmos Sci, 38(6):1179-1196.
Huang R H, 1987. Influence of the heat source anomaly over the tropical western Pacific on the subtropical high over East Asia[C]//International Conference on the General Circulation of East Asia, April 10-15, Chengdu, China, 40-51.
Huang R H, 1992. Impacts of the tropical western Pacific on the East Asian summer monsoon[J]. J Meteor Soc Japan, 70(1B):243-256.
Jiang T, Su B D, Hartmann H K, 2007. Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961-2000[J]. Geomorphology, 85(3):143-154.
Lu R Y, Oh J H, Kim B J, 2002. A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer[J]. Tellus Series A-dynamic Meteorology And Oceanography, 54(1):44-55.
Lu R, 1987. Convective activities in the tropical western Pacific and their impact on the northern hemisphere summer circulation[J]. J Meteor Soc Japan, 65(3):373-390.
Power S B, Tseitkin F, Torok S J, et al, 1998. Australian temperature, Australian rainfall and the Southern Oscillation, 19101992:Coherent variability and recent changes[J]. Australian Meteorological Magazine, 47(2):85-101.
Qian C, Zhou T J, 2013. Multidecadal variability of North China aridity and its relationship to PDO during 1900-2010[J]. J Climate, 27(3):1210-1222.
Simmons A J, Wallace J M, Branstator G W, 1983. Barotropic wave propagation and instability, and atmospheric teleconnection patterns[J]. J Atmos Sci, 40(6):1363-1392.
Soisson E T, Mackie T R, Ritter M A, 2009. A comprehensive assessment by tumor site of patient setup using daily MVCT imaging from more than 3, 800 helical tomotherapy treatments[J]. International Journal of Radiation Oncology Biology Physics, 73(4):1260-1269.
Takaya K, Nakamura H, 1997. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow[J]. Geophys Res Lett, 24(23):2985-2988.
Wallace J M, Gutzler D S, 1981. Teleconnection in the geopotential height field during the Northern Hemisphere winter[J]. Mon Wea Rev, 109(4):784-812.
Wang H J, He S P, 2015. The North China/Northeastern Asia severe summer drought in 2014[J]. J Climate, 28(17):6667-6681.
Wei J, Zhang Q Y, Tao S Y, 2004. Physical causes of the 1999 and 2000 summer severe drought in North China[J]. Chinese J Atmos Sci, 7(4):565-577.
Xu Y, Xu C H, Gao X J, et al, 2009. Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century[J]. Quaternary International, 208(1):44-52.
Zhai J Q, Su B, Krysanova V, et al, 2010. Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China[J]. J Climate, 23(3):649-663.
Zhang L X, Zhou T J, 2015. Drought over East Asia:A Review[J]. J Climate, 28(8):3375-3390.
Zhang Q, Xu C Y, Zhang Z, et al, 2008. Spatial and temporal variability of precipitation maxima during 1960-2005 in the Yangtze River basin and possible association with large-scale circulation[J]. J Hydrology, 353(3):215-227.
Zhang X B, Wang J F, Zwiers F W, et al, 2010. The influence of large-scale climate variability on winter maximum daily precipitation over North America[J]. J Climate, 23(11):2902-2915.
Zhou L T, Huang R H, 2010. Interdecadal variability of summer rainfall in Northwest China and its possible causes[J]. Int J Climatol, 30:549-557.
陈红, 薛峰, 2013. 东亚夏季风和中国东部夏季降水年代际变化的模拟[J]. 大气科学, 37(5):1143-1153. Chen H, Xue F, 2013. East Asian summer monsoon and eastern China summer precipitation interdecadal variation simulation[J]. Chinese J Amos Sci, 37(5):1143-1153.
陈金明, 陆桂华, 吴志勇, 等, 2016.1960-2009年中国夏季极端降水事件与气温的变化及其环流特征[J]. 高原气象, 35(3):675-684. Chen J M, Lu G H, Wu Z Y, et al, 2016. Change properties of summer extreme precipitation events and temperature and associated large-scale circulation in China during 1960-2009[J]. Plateau Meteor, 35(3):675-684. DOI:10.7522/j. issn. 1000-0534.2015.00072.
郭其蕴, 1985. 东亚夏季风的变化与中国降水[J]. 热带气象学报, 1(1):44-51. Guo Q Y, 1985. East Asian summer monsoon changes and precipitation in China[J]. J Trop Meteor, 1(1):44-51.
黄荣辉, 陈际龙, 黄刚, 等, 2006. 中国东部夏季降水的准两年周期振荡及其成因[J]. 大气科学, 30(4):545-560. Huang R H, Chen J L, Huang G, et al, 2006. Quasi-two-year periodic oscillations and their genesis of summer precipitation in eastern China[J]. Chinese J Amos Sci, 30(4):545-560.
黄荣辉, 周德刚, 陈文, 等, 2013. 关于中国西北干旱区陆-气相互作用及其对气候影响研究的最近进展[J]. 大气科学, 37(2):189-210. Huang R H, Zhou D G, Chen W, et al, 2013. Recent progress in studies of Air-Land interaction over the arid area of Northwest China and its impact on climate[J]. Chinese J Atoms Sci, 37(2):189-210.
李超, 崔春光, 王晓芳, 等, 2017. 一次中尺度对流低涡增强阶段的能量诊断分析[J]. 气象, 43(11):1326-1338. Li C, Cui C G, Wang X F, et al, 2017. Diagnostic analysis on the energy of a mesoscale convective vortex in enhancing stage[J]. Meteor Mon, 43(11):1326-1338.
刘毓赟, 陈文, 2012. 北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响[J]. 大气科学, 36(2):423-432. Liu Y Y, Chen W, 2012. Changes in the Northern Europe and Europe in the Northern Hemisphere in winter and their effects on climate in China[J]. Chinese J Amos Sci, 36(2):423-432.
卢楚翰, 管兆勇, 李永华, 等, 2013. 太平洋年代际振荡与南北半球际大气质量振荡及东亚季风的联系[J]. 地球物理学报, 42(4):1084-1094. Lu C H, Guan Z Y, Li Y H, et al, 2013. The relationship between the interdecadal oscillation of the Pacific Ocean and the atmospheric and temporal oscillations in the north and south hemisphere and the East Asian monsoon[J]. Chinese J Geophys, 42(4):1084-1094.
马开玉, 李北群, 曾庆云, 1993. 长江流域大范围旱涝特征的初步研究[J]. 南京大学学报(专辑), 122-126. Ma K Y, Li B Q, Zeng Q Y, 1993. Preliminary study on the characteristics of large-scale drought and flood in the Yangtze River Basin[J]. Journal of Nanjing University(album), 122-126.
平凡, 唐细坝, 高守亭, 等, 2014. 长江和淮河流域汛期洪涝大气环流特征的比较[J]. 中国科学:地球科学, 44(4):766-782. Ping F, Tang X B, Gao S T, et al, 2014. Comparison of atmospheric circulation characteristics between flood season and flood season in the Yangtze River and Huaihe river basins[J]. Sci China Ear Sci, 44(4):766-782.
陶诗言, 卫捷, 2006. 再论夏季西太平洋副热带高压的西伸北跳[J]. 应用气象学报, 17(5):513-525. Tao S Y, Wei J, 2006. Re-discussion of the West extension and North jump of the West Pacific subtropical high in summer[J]. J Appl Meteor Sci, 17(5):513-525.
王林, 陈文, 冯瑞权, 等, 2011. 北太平洋涛动的季节演变及其与我国冬春气候异常的联系[J]. 大气科学, 35(3):393-402. Wang L, Chen W, Feng R Q, et al, 2011. The seasonal evolution of the 2011. North Pacific Oscillation and its relation to the abnormal climate in winter and spring in China[J]. Chinese J Amos Sci, 35(3):393-402.
王文, 王劲廷, 2011.1951-2009年中国地表湿润状况变化趋势研究[J]. 气象与环境学报, 27(5):1-6. Wang W, Wang J T, 2011. Study on variation trend of surface wetness in China in 1951-2009 years[J]. J Meteor Environ, 27(5):1-6.
王政祥, 2008. 长江流域年降水量多年变化及系列代表性分析[J]. 人民长江, 39(17):90-92. Wang Z X, 2008. Annual variation of precipitation in Yangtze River Basin and series of representative analysis[J]. People Yangtze River, 39(17):90-92.
吴国雄, 刘辉, 陈飞, 等, 1994. 时变涡动输送和阻高形成-1980年夏中国的持续异常天气[J]. 气象学报, (3):308-320. Wu G X, Liu H, Chen F, et al, 1994. Time varying eddy transport and formation of barrier height. China's persistent abnormal weather in summer 1980[J]. Acta Meteor Sinica, 52(3):308-320.
杨修群, 朱益民, 谢倩, 等, 2004. 太平洋年代际振荡的研究进展[J]. 大气科学, 28(6):979-992. Yang X Q, Zhu Y M, Xie Q, et al, 2004. Advances in the study of Pacific Decadal Oscillation[J]. Chinese J Amos Sci, 28(6):979-992.
于淼, 金竑, 2015. 太平洋年代际涛动对中国东部季风区夏季降水的影响[J]. 黑龙江气象, 32(1):18-20. Yu M, Jin H, 2015. Pacific Decadal Oscillation on summer precipitation in the eastern monsoon region Chinese[J]. Heilongjiang Meteor, 32(1):18-20.
张庆云, 陶诗言, 2003. 夏季西太平洋副热带高压异常时的东亚大气环流特征[J]. 大气科学, 27(3):369-380. Zhang Q Y, Tao S Y, 2003. Characteristics of atmospheric circulation in East Asia during the Western Pacific subtropical high anomaly in summer[J]. Chinese J Amos Sci, 27(3):369-380.
张长灿, 李栋梁, 王慧, 等, 2017. 青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J]. 高原气象, 36(1):13-23. Zhang C C, Li D L, Wang H, et al, 2017. Characteristics of the surface sensible heat on the Qinghai-Xizang Plateau in the spring and its influences on the summertime rainfall pattern over the Eastern China[J]. Plateau Meteor, 36(1):13-23. DOI:10.7522/j. issn. 1000-0534.2016.00028.
赵珊珊, 周天军, 杨修群, 等, 2009. 热带印度洋偶极子与中国夏季年际气候异常关系的年代际变化[J]. 气象学报, 67(4):549-560. Zhao S S, Zhou T J, Yang X Q, et al, 2009. Interdecadal change of the relationship between tropical Indian Ocean dipole and anomalous summer climate in China[J]. Acta Meteor Sinica, 67(4):549-560.
周连童, 黄荣辉, 2008. 中国西北干旱、半干旱区感热的年代际变化特征及其与中国夏季降水的关系[J]. 大气科学, 32:1276-1288. Zhou L T, Huang R H, 2008. Interdecadal variability of sensible heat in arid and semi-arid regions of Northwest China and its relation to summer precipitation in China[J]. Chinese J Atmos Sci, 32:1276-1288.
竺可桢, 李良骐, 1934. 华北之干旱及其前因后果[J]. 地理学报, (2):98-109. Zhu K Z, Li L Q, 1934. The drought in North China and its antecedents and consequences[J]. Acta Geograp Sinica, (2):98-109.
[1] 任梅芳, 庞博, 徐宗学, 赵彦军. 基于随机森林模型的雅鲁藏布江流域气温降尺度研究[J]. 高原气象, 2018, 37(5): 1241-1253.
[2] 刘琼, 张小平, 张志斌, 张勃. 河西西部地区气候变化的时空特征分析[J]. 高原气象, 2018, 37(5): 1353-1363.
[3] 张磊, 王春燕, 潘小多. 基于区域气候模式未来气候变化研究综述[J]. 高原气象, 2018, 37(5): 1440-1448.
[4] 陈锐杰, 刘峰贵, 陈琼, 毛旭锋, 周强. 近60年青藏高原东北缘极端气温事件与气温日较差分析——以西宁地区为例[J]. 高原气象, 2018, 37(5): 1188-1198.
[5] 池再香, 夏阳, 刘莉娟, 杨春艳, 龙先菊, 潘徐燕, 舒康宁, 吴丹. 基于积温干燥度指数的云贵高原东部汛期干湿变化趋势分析[J]. 高原气象, 2018, 37(5): 1199-1207.
[6] 谢欣汝, 游庆龙, 林厚博. 近10年青藏高原中东部地表相对湿度减少成因分析[J]. 高原气象, 2018, 37(3): 642-650.
[7] 樊威伟, 马伟强, 郑艳, 杨智敏. 青藏高原地面加热场年际变化特征及其与西风急流关系研究[J]. 高原气象, 2018, 37(3): 591-601.
[8] 谢欣汝, 游庆龙, 保云涛, 孟宪红. 基于多源数据的青藏高原夏季降水与水汽输送的联系[J]. 高原气象, 2018, 37(1): 78-92.
[9] 敖雪, 翟晴飞, 崔妍, 周晓宇, 易雪, 沈历都, 赵春雨, 林蓉. 三种风场再分析资料在辽宁省海岸带的比较与评估[J]. 高原气象, 2018, 37(1): 275-285.
[10] 张蓓, 戴新刚. 基于CMIP5的2006—2015年中国气温预估偏差分析及订正[J]. 高原气象, 2017, 36(6): 1619-1629.
[11] 刘维成, 张强, 傅朝. 近55年来中国西北地区降水变化特征及影响因素分析[J]. 高原气象, 2017, 36(6): 1533-1545.
[12] 计晓龙, 吴昊旻, 黄安宁, 赵卫, 吴阳. 青藏高原夏季降水日变化特征分析[J]. 高原气象, 2017, 36(5): 1188-1200.
[13] 冯蕾, 周天军. 20 km高分辨率全球模式对青藏高原夏季降水变化的预估[J]. 高原气象, 2017, 36(3): 587-595.
[14] 王丹云, 吕世华, 韩博, 李照国, 潘永洁, 孟宪红, 奥银焕, 王欣. 近30年黄土高原春季降水特征与春旱变化的关系[J]. 高原气象, 2017, 36(2): 395-406.
[15] 伍清, 蒋兴文, 谢洁. CMIP5模式对西南地区气温的模拟能力评估[J]. 高原气象, 2017, 36(2): 358-370.