Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (3): 747-756    DOI: 10.7522/j.issn.1000-0534.2018.00039
论文     
祁连山TRwS204与中国标准雨量筒降水观测对比研究
郑勤1,2,3, 陈仁升1,2, 韩春坛1,2,3, 宋耀选1,2
1. 中国科学院西北生态环境资源研究院黑河上游生态-水文试验研究站, 甘肃 兰州 730000;
2. 中国科学院内陆河流域生态水文重点实验室, 甘肃 兰州 730000;
3. 中国科学院大学, 北京 100049
Intercomparison Study on Precipitation Observations of TRwS204 and Chinese Standard Precipitation Gauge in the Qilian Mountains
ZHENG Qin1,2,3, CHEN Rensheng1,2, HAN Chuntan1,2,3, SONG Yaoxuan1,2
1. Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. Key Laboratory of Ecohydrology of Inland River Basin, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF 
摘要: 山区降水类型、过程和气候条件复杂多变,不同雨量筒观测结果均存在一定的误差,亟需了解常用人工和自记雨量筒之间及其与实际降水量之间的差异。针对中国标准雨量筒[无防风措施(CSPGUN)和配备单层Alter防风圈(CSPGSA)]和在祁连山常用的TRwS204称重式雨雪量计[配备单层Alter防风圈(TRwSSA)],于2014年9月至2017年8月在祁连山黑河上游葫芦沟小流域开展了同步降水观测对比试验,以按照世界气象组织推荐的固态降水测量标准安装的中国标准雨量筒的修正值作为标准降水量。结果表明:(1)CSPGUN、CSPGSA和TRwSSA降雨观测的平均动力损失(平均动力损失与平均标准降雨量的百分比)分别为0.21 mm(3.4%)、0.12 mm(1.9%)和0.61 mm(9.8%),雨夹雪分别为0.37 mm(7.6%)、0.16 mm(3.3%)和0.51 mm(10.5%),降雪分别为0.27 mm(10.2%)、0.09 mm(3.4%)和0.57 mm(21.4%)。(2)CSPGUN和CSPGSA动力损失的差异主要与防风圈的使用有关,而CSPGSA和TRwSSA动力损失的差异主要与雨量筒形状不同有关,同时本研究结果还可能受到TRwS204特定误差的影响。(3)当风速高于2.0 m·s-1时,各雨量筒降雨捕捉率出现明显的降低。因雨夹雪和降雪期间的平均风速较低,只有CSPGUN降雪捕捉率随风速的增加出现一定的降低。
关键词: 中国标准雨量筒TRwS204称重式雨雪量计降水对比观测动力损失降水类型    
Abstract: The type and process of precipitation, and the climate condition are complex in mountainous area, and biases exist in the observations of various precipitation gauges. It is urgent to understand the difference between measurements from manual and automatic gauges, and the difference between the gauge measurements and the real precipitation. Comparison of precipitation measurements was carried out in the Hulu watershed of Heihe river upstream in the Qilian Mountains from September 2014 to August 2017. The Chinese standard precipitation gauge[no wind shield (CSPGUN) and equipped with single Alter wind shield (CSPGSA)] and the TRwS204 weighing precipitation gauge[equipped with single Alter wind shield (TRwSSA)] which was commonly used in the Qilian Mountains were used. Choosing the adjustments of the measurements from the Chinese standard precipitation gauge installed in accordance with the Double Fence Intercomparison Reference recommended by the World Meteorological Organization as standard precipitation. The results show that:(1) The average dynamic losses (the percentage of the average dynamic losses relative to the average standard precipitation) of CSPGUN, CSPGSA and TRwSSA were 0.21 mm (3.4%), 0.12 mm (1.9%) and 0.61 mm (9.8%) for rain, and 0.37 mm (7.6%), 0.16 mm (3.3%) and 0.51 mm (10.5%)for sleet, and 0.27 mm (10.2%), 0.09 mm (3.4%) and 0.57 mm (21.4%) for snow, respectively. (2) The difference between dynamic losses of CSPGUN and CSPGSA was mainly related to the effect of the wind shield. The difference between dynamic losses of CSPGSA and TRwSSA was mainly related to the different gauge shape, and it could also be affected by the specific errors of TRwS204. (3) For rain, gauge catch ratio decreased a lot when mean wind speed was higher than 2.0 m·s-1. Because the mean wind speed was relatively low for sleet and snow, only the catch ratio of CSPGUN decreased with the increase of wind speed for snow.
Key words: Chinese standard precipitation gauge    TRwS204 weighing precipitation gauge    comparison between precipitation observations    dynamic loss    precipitation type
收稿日期: 2018-01-17 出版日期: 2018-06-24
ZTFLH:  P412.13  
基金资助: 国家自然科学基金项目(41690141,41501040,41671029);中科院寒旱所科技服务网络计划项目(HHS-TSS-STS-1503)
通讯作者: 陈仁升(1974),男,山东沂水人,研究员,主要从事寒区水文研究.E-mail:crs2008@lzb.ac.cn     E-mail: crs2008@lzb.ac.cn
作者简介: 郑勤(1993),女,四川南充人,硕士研究生,主要从事山区降水观测误差校正研究.E-mail:zhengqin15@mails.ucas.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑勤
陈仁升
韩春坛
宋耀选

引用本文:

郑勤, 陈仁升, 韩春坛, 宋耀选. 祁连山TRwS204与中国标准雨量筒降水观测对比研究[J]. 高原气象, 2018, 37(3): 747-756.

ZHENG Qin, CHEN Rensheng, HAN Chuntan, SONG Yaoxuan. Intercomparison Study on Precipitation Observations of TRwS204 and Chinese Standard Precipitation Gauge in the Qilian Mountains. Plateau Meteorology, 2018, 37(3): 747-756.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00039        http://www.gyqx.ac.cn/CN/Y2018/V37/I3/747

Chen R S, Liu J F, Kang E S, et al, 2015.Precipitation measurementintercomparison in the Qilian Mountains, north-eastern Tibetan Plateau[J].The Cryosphere, 9(5):1995-2008.DOI:10.5194/tc-9-1995-2015.
Goodison B E, Louie P Y T, Yang D Q, 1998.WMO Solid Precipitation Measurement Intercomparison:Final Report[R].Geneva, Switzerland:WMO.
Kochendorfer J, Nitu R, Wolff M, et al, 2017.Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE[J].Hydrol Earth Syst Sci, 21(7):3525-3542.DOI:10.5194/hess-21-3525-2017.
Lanza L G, Leroy M, Alexandropoulos C, et al, 2006.WMO Laboratory Intercomparison of Rainfall Intensity Gauges[R].Geneva, Switzerland:WMO.
Nitu R, Wong K, 2010.CIMO survey on national summaries of methods and instruments for solid precipitation measurement at automatic weather stations[R].Geneva, Switzerland:WMO.
Ren Z H, Li M Q, 2007.Errors and correction of precipitation measurements in China[J].Adv Atmos Sci, 24(3):449-458.DOI:10.1007/s00376-007-0449-3.
Savina M, Schäppi B, Molnar P, et al, 2012.Comparison of a tipping-bucket and electronic weighing precipitation gage for snowfall[J].Atmos Res, 103(3):45-51.DOI:10.1016/j.atmosres.2011.06.010.
Sevruk B, 1996.Adjustment of tipping-bucket precipitation gauge measurements[J].Atmos Res, 42(1/4):237-246.
Sevruk B, Chvíla B, 2005.Error sources of precipitation measurements using electronic weight systems[J].Atmos Res, 77(1/4):39-47.DOI:10.1016/j.atmosres.2004.10.026.
Sevruk B, Klemm S, 1989.Catalogue of national standard precipitation gauges[R].Geneva, Switzerland:WMO.
Sevruk B, Ondrás M, Chvíla B, 2009.The WMO precipitation measurement intercomparisons[J].Atmos Res, 92(3):376-380.DOI:10.1016/j.atmosres.2009.01.016.
Smith C D, 2008.Correcting the wind bias in snowfall measurements made with a Geonor T-200B precipitation gauge and Alter wind shield[J].CMOS Bulletin SCMO, 36(5):162-167.
Yang D Q, 2014.Double Fence Intercomparison Reference (DFIR) vs.Bush Gauge for "true" snowfall measurement[J].J Hydrol, 509:94-100.DOI:10.1016/j.jhydrol.2013.08.052.
Yang D Q, Elomaa E, Tuominen A, et al, 1999.Wind-induced precipitation undercatch of the Hellmann gauges[J].Hydrol Res, 30(1):57-80.
Yang D Q, Simonenko A, 2014.Comparison of winter precipitation measurements by six Tretyakov gauges at the Valdai experimental site[J].Atmos Ocean, 52(1):39-53.DOI:10.1080/07055900.2013.865156.
Ye B S, Yang D Q, Ding Y J, et al, 2004.A bias-corrected precipitation climatology for China[J].J Hydrometeor, 5(6):1147-1160.DOI:10.1175/JHM-366.1.
陈仁升, 康尔泗, 丁永建, 2014.中国高寒区水文学中的一些认识和参数[J].水科学进展, 25(3):307-317.Chen R S, Kang E S, Ding Y J, 2014.Some knowledge on and parameters of China's alpine hydrology[J].Adv Water Sci, 25(3):307-317.DOI:10.14042/j.cnki.32.1309.2014.03.006.
冯功堂, 由希尧, 张先明, 1996.天山北坡降水观测误差对比分析[J].干旱区研究, 13(1):20-23.Feng G T, You X Y, Zhang G M, 1996.The comparative analysis on the error of rainfall observation at the northern slope of Tianshan Mountains[J].Arid Zone Res, 13(1):20-23.
韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6):1477-1486.Han Y Z, Ma W Q, Wang B Y, et al, 2017.Climatic characteristics of rainfall change over the Qinghai-Tibetan Plateau from 1980 to 2013[J].Plateau Meteor, 36(6):1477-1486.DOI:10.7522/j.issn.1000-0534.2016.00125.
刘九卿, 2014.称重传感器电路补偿机理及补偿电阻计算[J].衡器, 43(1):23-29.Liu J Q, 2014.Weighing sensor circuit compensation mechanism and compensation resistance calculation[J].Weighing Instrument, 43(1):23-29.
任芝花, 王改利, 邹风玲, 等, 2003.中国降水测量误差的研究[J].气象学报, 61(5):621-627.Ren Z H, Wang G L, Zou F L, et al, 2003.The research of precipitation measurement errors in China[J].Acta Meteor Sinica, 61(5):621-627.
王磊, 陈仁升, 宋耀选, 2017.高寒山区面降水量获取方法及影响因素研究进展[J].高原气象, 36(6):1546-1556.Wang L, Chen R S, Song Y X, 2017.Research review on calculation methods and influential factors on areal precipitation of alpine mountains[J].Plateau Meteor, 36(6):1546-1556.DOI:10.7522/j.issn.1000-0534.2017.00007.
王希强, 陈仁升, 刘俊峰, 2017.气候变化背景下祁连山区负积温时空变化特征分析[J].高原气象, 36(5):1267-1275.Wang X Q, Chen R S, Liu J F, 2017.Spatial and temporal variation characteristics of accumulated negative temperature in Qilian Mountains under climate change[J].Plateau Meteor, 36(5):1267-1275.DOI:10.7522/j.issn.1000-0534.2016.00096.
杨大庆, 姜彤, 张寅生, 等, 1988.天山乌鲁木齐河源降水观测误差分析及其改正[J].冰川冻土, 10(4):384-399.Yang D Q, Jiang T, Zhang Y S, et al, 1988.Analysis and correction of errors in precipitation measurement at the head of Urumqi river, Tianshan[J].J Glaciol Geocryol, 10(4):384-399.
叶柏生, 杨大庆, 丁永建, 等, 2007.中国降水观测误差分析及其修正[J].地理学报, 62(1):3-13.Ye B S, Yang D Q, Ding Y J, et al, 2007.A bias-corrected precipitation climatology for China[J].Acta Geograp Sinica, 62(1):3-13.
赵求东, 叶柏生, 何晓波, 等, 2014.唐古拉山区Geonor T-200B雨雪量计日降水观测误差修正[J].高原气象, 33(2):452-459.Zhao Q D, Ye B S, He X B, et al, 2014.Bias correction of daily precipitation measured by Geonor T-200B precipitation gauge in Tanggula Mountain[J].Plateau Meteor, 33(2):452-459.DOI:10.7522/j.issn.1000-0534.2013.00013.
[1] 赵求东, 叶柏生, 何晓波, 张健, 赵传成. 唐古拉山区Geonor T—200B雨雪量计日降水观测误差修正[J]. 高原气象, 2014, 33(2): 452-459.