Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 1102-1109    DOI: 10.7522/j.issn.1000-0534.2018.00047
论文     
远距离地闪回击ELF/VLF电磁场传播特性的模拟分析
冯建伟1, 侯文豪2, 范雪3, 王磊4, 周磊5, 肖冬5
1. 苏州市气象局, 江苏 苏州 215131;
2. 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室, 江苏 南京 210044;
3. 南京信息工程大学滨江学院, 江苏 南京 210044;
4. 云南电力试验研究院(集团)有限公司, 云南 昆明 650217;
5. 云南电网有限责任公司昆明供电局, 云南 昆明 650011
Simulation Analysis of Lightning-Return Stroke ELF/VLF Ground Wave Propagation over Intermediate Ranges
FENG Jianwei1, HOU Wenhao2, FAN Xue3, WANG Lei4, ZHOU Lei5, XIAO Dong5
1. Suzhou meteorology bureau, Suzhou 215000, Jiangsu, China;
2. Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation center on Forecast and Evaluation of Meteorological Disaster(CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
3. Binjiang College of NanjingUniversity of Information Science and Technolog, Nanjing 210044, Jiangsu, China;
4. Yunnan Electric Power Test & Research Institute(Group) Co., Ltd, Kunming 650217, Yunnan, China;
5. Kunming Power Supply Bureau, Kunming 650011, Yunnan, China
 全文: PDF 
摘要: 闪电放电产生的频谱范围从几赫兹到几十兆赫兹,但是多数电磁场能量集中在低频和甚低频区。建立了一种新的更简便的近似解析算法来计算中远距离闪电回击电磁场。该近似算法将电磁波沿不同性质复杂地表传播的衰减函数在频域上分化为电导率衰减和地表曲率衰减两个函数的卷积,这样衰减函数物理意义更为明确,避开了和原来复杂的高震荡艾里函数有关的微分方程求解过程,计算过程大幅简化。通过繁琐繁杂但高精度的牛顿迭代求解法验证,证明了本文近似算法能很好的计算中距离闪电回击辐射场的幅值、波头时间等参量,在地面电导率为4 S·m-1,0.01 S·m-1和0.001 S·m-1时近似算法的最大误差分别为0.2%,3.3%和8.7%。简化后使得计算效率大大提高,同时通过精度对比,发现提出的近似算法精度是比较理想的。因此,该研究结果更加方便有效地解决了远距离雷电电磁波传播和放电参量的反演。此外计算发现地球曲面对中距离电磁场的传播具有明显的影响。比如,在地球曲面的影响下1 500 km处闪电回击ELF/VLF辐射电磁场的幅值仅仅为平坦地表情况的30%~40%,500 km处闪电回击ELF/VLF辐射电磁场的幅值仅仅为平坦地表情况的75%~80%。
关键词: 闪电回击ELF/VLF辐射场电导率衰减因子地表曲率衰减因子    
Abstract: Lightning discharges can radiate electromagnetic waves over a wide frequency range from a few Hz to many tens of MHz, but most of the electromagnetic energy is radiated in the ELF and VLF bands. A new approximate method for lightning-radiated extremely low-frequency (ELF) and very low-frequency (VLF) ground wave propagation over intermediate ranges (within 1500 km) was presented in this paper. In our approximate method the field attenuation function was divided into two factors in frequency domain representing the propagation effect of the earth conductivity and curvature, respectively, and these two attenuation factors have more clear and simple expressions in frequency domain, which can be easily calculated by multiplying them rather than solving complex differential equation related to Airy functions. The method was validated by using Newton-Raphson root-finding method for propagation path with different earth conductivities, we found our approximate method could predict the field peak and waveform rise time with a satisfactory accuracy. The comparison results show that our new approximate method can predict the lightning-radiated field peak value over the intermediate range with a satisfactory accuracy within maximum errors of 0.2%, 3.3% and 8.7% for the earth conductivity of 4 S·m-1, 0.01 S·m-1 and 0.001 S·m-1, respectively. So, the research result has solved it in a more efficient way. We also found that the earth curvature has much more effect on the field propagation at the intermediate ranges than the earth finite conductivity. For example, the lightning-produced field peak of ELF/VLF frequency propagating over a spherical-earth is just about 30%~40% of that propagating over a planar-earth at a distance of 1500 km, and 75%~80% for a distance of 500 km. we should pay more attenuation to the effect of earth curvature, for example, the current moment peak value predicted from the measured far field peak will be underestimated when using a far-field-current relationship at the assumed planar earth.
Key words: Lightning return stroke    ELF/VLF electric field    earth conductivity factor    curvature factor
收稿日期: 2017-12-14 出版日期: 2018-08-22
:  P319  
基金资助: 国家自然科学基金面上项目(4775006,41575004);苏州市科技计划项目(SS201741);江苏省气象局面上科研项目(KM201609);配电网综合防雷体系研究与工程示范项目(YNKJQQ00000274)
作者简介: 冯建伟(1985-),男,河北新河人,工程师,主要从事雷电物理、雷电监测及气象灾害防御研究.E-mail:jw_feng@126.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冯建伟
侯文豪
范雪
王磊
周磊
肖冬

引用本文:

冯建伟, 侯文豪, 范雪, 王磊, 周磊, 肖冬. 远距离地闪回击ELF/VLF电磁场传播特性的模拟分析[J]. 高原气象, 2018, 37(4): 1102-1109.

FENG Jianwei, HOU Wenhao, FAN Xue, WANG Lei, ZHOU Lei, XIAO Dong. Simulation Analysis of Lightning-Return Stroke ELF/VLF Ground Wave Propagation over Intermediate Ranges. Plateau Meteorology, 2018, 37(4): 1102-1109.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00047        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/1102

Cooray V, Fernando M, Sorensen T, 2000. Propagation of lightning generated transient electromagnetic fields over finitely conducting ground[J]. Atmos Terr Phys, 62:583-600.
Cooray V, 2014. The lightning flash[M]. Stevenage:The Institution of Engineering and Technology.
Cooray V, 2008. On the accuracy of several approximate theories used in quantifying the propagation effects on lightning generated electromagnetic fields[J]. IEEE Trans Antennas Propag, 56(7):1960-1967.
Cooray V, 2009. Propagation on effects due to finitely conducting ground on lightning-generated magnetic fields evaluated using Sommerfeld's integrals[J]. IEEE Trans Electromagn Compat, 51(3):526-531.
Cummer S A, 1997. Lightning and ionospheric remote sensing using VLF/ELF radio atmospherics[D]. Palo Alto:Stanford University.
Cummer S A, Inan U S, Bell T F, 1998. Ionospheric D region remote sensing using VLF radio atmospherics[J]. Radio Sci, 33(6):1781-1792.
Delfino F, Procopio R, Rossi M, 2008a. Lightning return stroke current radiation in presence of a conducting ground:1. Theory and numerical evaluation of the electromagnetic fields[J]. Geophys Res, 113:D05110.
Delfino F, Procopio R, Rossi M, 2008b. Lightning return stroke current radiation in presence of a conducting ground:2. Validity assessment of simplified approaches[J]. Geophys Res, 113:D05111.
Hill D A, Wait J R, 1980. Ground wave attenuation function for a spherical earth with arbitrary surface impedance[J], Radio Sci, 15(3):637-643.
Hu W, Cummer S A, 2006. An FDTD model for low and high altitude lightning-generated EM fields[J]. IEEE Trans Antennas Propag, 54(5):1513-1522.
Jones D L, 1970. Electromagnetic radiation from multiple return strokes of lightning[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 32(6):1077-1093.
Maclean T S M, Wu Z, 1993. Radiowave propagation over ground[M]. London:Chapman & Hall.
Miller J C P, 1946. The airy integral[D]. New York:Cambridge University.
Shao X M, Jacobson A R, 2009. Model simulation of very low-frequency and low-frequency lightning signal propagation over intermediateranges[J]. IEEE Transactions on Electromagnetic Compatibility, 51(3):519-525.
Uman M A, 1987. The lightning discharge[M]. San Diego:Courier Corporation.
Wait J R, 1953. Radiation from a vertical electric dipole over a stratifiedground[J]. Transactions of the IRE Professional Group on Antennas and Propagation, 1(1):9-11.
Wait J R, 1956. Radiation from a vertical antenna over a curved stratified ground[J]. Journal of Research of the National Bureau of Standards, 56(4):237-244.
Wait J R, 1960. On the excitation of electromagnetic surface waves on a curvedsurface[J]. IRE Transactions on Antennas and Propagation, 8(4):445-448.
Wait J R, 1974. Recent analytical investigations of electromagnetic ground wave propagation over inhomogeneous earthmodels[J]. Proceedings of the IEEE, 62(8):1061-1072.
Zhang Q L, Jing X Q, Yang J, et al, 2012a. Numerical simulation of the lightning electromagnetic fields along a rough and ocean-land mixed propagation path[J]. Geophys Res, 117:D20304.
Zhang Q L, Yang J, Li D S, et al, 2012b. Propagation effects of a fractal rough ocean surface on the vertical electric field generated by lightning return strokes[J]. J Electrostatics, 70(1):54-59.
Zhang Q, Hou W, Ji T, et al, 2014. Validation and revision of far-field-current relationship for the lightning strike to electrically short objects[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 120:41-50
Zhang Q L, Ji T T, Hou W H, 2015. Effect of frequency-dependent soil on the propagation of electromagnetic fields radiated by subsequent lightning strike to tall objects[J]. IEEE Transactions on Electromagnetic Compatibility, 57(1):112-120.
刘妍秀, 张广庶, 王彦辉, 等, 2016. 闪电VHF辐射源功率观测及雷暴电荷结构的初步分析[J]. 高原气象, 35(6):1662-1670. Liu Y X, Zhang G S, Wang Y H, et al, 2016. Preliminary analysisof the VHF lightning radiation pulse power and charge structure in a thunderstorm[J]. Plateau Meteor, 35(6):1662-1670. DOI:10.7522/j. issn. 1000-0534.2016.00051.
张新科, 陈晋北, 余晔, 等, 2017. 雷暴系统影响下的黄土高原塬区微气象特征研究[J]. 高原气象, 36(2):384-394. Zhang X K, Chen Jinbei Yu Ye, et al, 2017. Study on the micrometeorological characteristics over the Loess Plateau under the influence of thunderstorm[J]. Plateau Meteor, 36(2):384-394. DOI:10.7522/j. issn. 1000-0534.2017.00002.
许霖, 姚蓉, 王晓雷, 等, 2017. 湖南省雷暴大风的时空分布和变化特征[J]. 高原气象, 36(4):993-1000. Xu L, Yao R, Wang X L, et al, 2017. Study of temporal-spatial distribution and variation characteristics of thunderstorm gales in Hunan[J]. Plateau Meteor, 36(4):993-1000. DOI:10.7522/j. issn. 1000-0534.2016.00088.
No related articles found!