Please wait a minute...
高级检索
高原气象  2019, Vol. 38 Issue (1): 1-13    DOI: 10.7522/j.issn.1000-0534.2018.00070
论文     
青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析
朱平1,2, 俞小鼎3
1. 南京信息工程大学大气物理学院, 江苏 南京 210044;
2. 青海省气象台, 青海 西宁 810001;
3. 中国气象局干部培训学院, 北京 100081
Analysis of Meso-Small Scale System Characteristics of a Rare Severe Convective Weather in the Northeast Part of Qinghai-Tibetan Plateau
ZHU Ping1,2, YU Xiaoding3
1. School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
2. Meteorological Observatory of Qinghai Province, Xining 810001, Qinghai, China;
3. China Meteorological Administration Training Center, Beijing 100081, China
 全文: PDF(32821 KB)   HTML ( 10)
摘要: 2016年8月17-18日青藏高原东北部出现了罕见的大冰雹、短时暴雨、雷暴大风等强对流天气。运用常规观测资料、NCEP再分析资料、葵花静止气象卫星、多普勒天气雷达等观测资料分析了此次强对流过程的大气环境场和中小尺度对流系统的发生发展和对流传播机制。结果表明:西太平洋副热带高压北抬明显,属于低层暖平流强迫型。水汽输送主要来自南海。维持较长时间的弱冷锋是强对流的地面触发机制;对流云团逐渐演变为MCC,对流传播整体具有沿着河谷往层结不稳定区的正向和往低层入流风的反向传播的特征。河谷地形是影响对流移动和传播路径的关键;强对流风暴单体生命史均较长,强降雹单体为类超级单体和普通多单体,强降水回波属于多单体线状对流。降雹单体整体比降水单体发展得更强,变化幅度更大,尤其是垂直累积液态水含量的变化更剧烈。强对流开始前单体垂直累积液态水含量均是先增后降;几处局地雷暴大风是由雷暴云团内弱降水在较厚的环境干层蒸发而显著降温所产生的较大负浮力或由线状对流中强降水拖曳导致的强下沉辐散气流造成,雷达回波具有质心急剧下降或中层径向速度辐合特征。
关键词: 青藏高原强对流中小尺度系统传播地形    
Abstract: A rare severe convective weather process with the large hailstone, local short-time rainstorm, and thunderstorm gale occurred over northeast part of Qinghai-Tibetan Plateau from 17 to 18 August 2016. The genesis and development and propagation mechanism of the meso-small scale convective system, and the atmospheric environment field were all analyzed by using the datum of conventional observation, NCEP reanalysis, himawari-8 satellite, C and X band Doppler radar, etc. And the characteristics between hail echo and rain echo were contrasted too. The results show that:It belonged to the low-level warm advection forcing type because of the obvious lifting northward of Subtropical High over west Pacific. The Water vapor was transported mainly from the South China Sea, and the Bay of Bengal next. The starting and trigger mechanism of sever convection was the weak cold front on surface with a longer life. Convective clouds gradually evolved into mesoscale convection complex (MCC), and the convection propagated toward unstable Atmospheric stratification zone and backward inflow wind of low-level along Huangshui river valley as a whole, and the convective motion dominated by propagation due to the weak inflow wind. The river valley topography was the key to the moving and propagation path of convection. All severe convective cells had comparatively long life cycle, the strong hail cells were similar-supercells and common multi-cells, and the heavy precipitation cells belonged to the multi-cell linear convection. The strong hail cells generally developed stronger and changed more greatly than the heavy precipitation cells, such as the former had stronger echo intensity, higher organization degree, longer life cycle mesocyclone, higher echo top and echo centroid, and most echo parameters had greater changes, especially VIL (vertical integrated liquid water content). In addition, the strong echo pendency located over the weak echo region in the former cells, etc. But before the beginning of severe convection, the VIL almost increased first and then dropped, and the maximum echo intensity exceeded 60 dBZ but changed relatively small both in the hail and precipitation cells. The four positions of thunderstorm gale were generated by the strongly down-divergence flow, that was produced by greater negative buoyancy due to strong temperature-fall period of weak rain of thunder clouds evaporation in thicker dry air level, or the drag of heavy precipitation in linear convection accompanied with dry air entrainment raindrops. The characteristics in radar echo presented the sharp decline of centroid height and mid-altitude radial convergence (MARC).
Key words: Qinghai-Tibetan Plateau    severe convection    meso-small scale system    propagation    topography
收稿日期: 2018-05-15 出版日期: 2019-01-26
:  P458.2  
基金资助: 国家自然科学基金项目(41865006);青海省气象局重点项目
作者简介: 朱平(1980-),女,四川人,高级工程师,主要从事大气遥感和灾害天气预报预警业务和研究E-mail:ping_xjs2010@126.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱平
俞小鼎

引用本文:

朱平, 俞小鼎. 青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J]. 高原气象, 2019, 38(1): 1-13.

ZHU Ping, YU Xiaoding. Analysis of Meso-Small Scale System Characteristics of a Rare Severe Convective Weather in the Northeast Part of Qinghai-Tibetan Plateau. Plateau Meteorology, 2019, 38(1): 1-13.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00070        http://www.gyqx.ac.cn/CN/Y2019/V38/I1/1

Corfidi S F, Merritt J H, Fritsch J M, 1966. Predicting the movement of mesoscale convective complexes[J]. Weather Forecasting, 11:41-46.
Corfidi S F, 2003. Cold pools and MCS propogation:forecasting the motion of downwind-developing MCSs[J]. Weather Forecasting, 18:997-1017.
Zhu G F, Chen S J, 2003. A numerical case study on a mesoscale convective system over the Qinghai-Xizang (Tibetan) Plateau[J]. Advances in Atmospheric Sciences, 20(3):385-397.
俞小鼎, 王迎春, 陈明轩, 等, 2005. 新一代天气雷达与强对流天气预警[J]. 高原气象, 24(3):456-464.
俞小鼎, 周小刚, 王秀明, 2012. 雷暴与强对流临近天气预报技术进展[J]. 气象学报, 70(3):311-337.
俞小鼎, 2013. 短时强降水临近预报的思路和方法[J]. 暴雨灾害, 32(3):202-209.
俞小鼎, 2014. 关于冰雹的融化层高度[J]. 气象, 40(6):649-654.
郑永光, 陶祖钰, 俞小鼎, 2017. 强对流天气预报的一些基本问题[J]. 气象, 43(6):641-652.
王秀明, 周小刚, 俞小鼎, 2013. 雷暴大风环境特征及其对风暴结构影响的对比研究[J]. 气象学报, 71(5):839-852.
王秀明, 俞小鼎, 周小刚, 2014. 雷暴潜势预报中几个基本问题的讨论[J]. 气象, 40[4]:389-399.
谢欣汝, 游庆龙, 保云涛, 等, 2018. 基于多源数据的青藏高原夏季降水与水汽输送的联系[J]. 高原气象, 37(1):78-92. DOI:10.7522/j. issn. 1000-0534.2017.00030.
申红艳, 陈丽娟, 胡泊, 等, 2017. 西北中部夏季降水主要空间型及环流特征[J]. 高原气象, 36(2):455-467. DOI:10.7522/j. issn. 1000-0534.2016.00139.
徐祥德, 陶诗言, 王继志, 等, 2002. 青藏高原-季风水汽输送"大三角扇形"影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 60(3):257-266.
卓嘎, 徐祥德, 陈联寿, 2002. 青藏高原夏季降水的水汽分布特征[J]. 气象科学, 22(1):1-8.
王宝鉴, 黄玉霞, 何金海, 等, 2004. 东亚夏季风期间水汽输送与西北干旱的关系[J]. 高原气象, 23(6):912-918.
刘维成, 张强, 傅朝, 2017. 近 55 年来中国西北地区降水变化特征及影响因素分析[J]. 高原气象, 36(6):1533-1545. DOI:10.7522/j. issn. 1000-0534.2017.00081.
韩熠哲, 马伟强, 王炳赟, 等, 2017. 青藏高原近 30年降水变化特征分析[J]. 高原气象, 36(6):1477-1486. DOI:10.7522/j. issn. 1000-0534.2016.00125.
戴加洗, 1990.青藏高原气候[M]. 北京:气象出版社.
苗秋菊, 徐祥德, 施小英, 2004. 青藏高原周边区域性异常多雨中心的水汽输送结构[J]. 气象, 30(12):44-47.
徐祥德, 周明煜, 陈家宜, 等, 2001. 青藏高原地-气过程动力、热力结构综合物理图象[J]. 中国科学(地球科学), 31(5):428-440.
孙继松, 戴建华, 何立富, 等, 2014. 强对流天气预报的基本原理和技术方法[M]. 北京:气象出版社, 133-139.
孔德兵, 2016. 西北地区东部雷暴特征及24h预报研究[D]. 兰州:兰州大学.
赵庆云, 傅朝, 刘新伟, 等, 2017. 西北东部暖区大暴雨中尺度系统演变特征[J]. 高原气象, 36(3):697-704. DOI:10.7522/j. issn. 1000-0534.2016.00140.
王江山, 李锡福, 2004. 青海天气气候[M]. 北京:气象出版社, 99-282.
张国庆, 刘蓓, 2006. 青海省冰雹灾害分布特征[J]. 气象科技, 34(5):558-562.
朱平, 李生辰, 王振会, 等, 2014. 青藏高原东部暴雨云团局地强降水响应特征[J]. 遥感学报, 18(2):418-431. DOI:10.11834/jrs. 20143069.
朱平, 张国庆, 2015. 祁连山南麓湟水河谷地形云雷达回波特征[J]. 干旱区研究, 32(3):551-564. DOI:10.13866/j. azr. 2015.03.20.
田成娟, 朱平, 马琼, 等, 2017. 青藏高原东北部两次区域性大到暴雨对比分析[J]. 高原山地气象研究, 37(1):1-6.
[1] 刘菊菊, 游庆龙, 王楠. 青藏高原夏季云水含量及其水汽输送年际异常分析[J]. 高原气象, 2019, 38(3): 449-459.
[2] 陈月, 李跃清, 范广洲, 陈宇航. 青藏高原大气蕴含潜热时空分布特征研究[J]. 高原气象, 2019, 38(3): 460-473.
[3] 王奕丹, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 郑汇璇, 付春伟. 高原季风特征及其与东亚夏季风关系的研究[J]. 高原气象, 2019, 38(3): 518-527.
[4] 郑汇璇, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 王奕丹, 付春伟. 那曲高寒草地总体输送系数及地面热源特征[J]. 高原气象, 2019, 38(3): 497-506.
[5] 明绍慧, 秦正坤, 黄瑜. 卫星资料揭示的青藏高原对流层上层温度气候演变趋势特征[J]. 高原气象, 2019, 38(2): 264-277.
[6] 杜牧云, 王斌, 肖艳姣, 付志康, 周伶俐. X波段双线偏振雷达青藏高原观测资料质量分析[J]. 高原气象, 2019, 38(2): 278-287.
[7] 常姝婷, 刘玉芝, 华珊, 贾瑞. 全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J]. 高原气象, 2019, 38(2): 227-236.
[8] 于涵, 张杰, 刘诗梦. 青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J]. 高原气象, 2019, 38(2): 237-252.
[9] 严晓强, 胡泽勇, 孙根厚, 谢志鹏, 王奕丹, 郑汇璇. 那曲高寒草地长时间地面热源特征及其气候影响因子分析[J]. 高原气象, 2019, 38(2): 253-263.
[10] 余小嘉, 杨胜朋, 蒋熹. COSMIC掩星资料在青藏高原地区的偏差特征[J]. 高原气象, 2019, 38(2): 288-298.
[11] 屠妮妮, 郁淑华, 高文良. 风场对高原涡在河套地区打转影响的初步分析[J]. 高原气象, 2019, 38(1): 66-77.
[12] 胡梦玲, 游庆龙. 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019, 38(1): 14-28.
[13] 王玉琦, 鲍艳, 南素兰. 青藏高原未来气候变化的热动力成因分析[J]. 高原气象, 2019, 38(1): 29-41.
[14] 刘田, 阳坤, 秦军, 田富强. 青藏高原中、东部气象站降水资料时间序列的构建与应用[J]. 高原气象, 2018, 37(6): 1449-1457.
[15] 吕艺影, 银燕, 陈景华, 况祥, 郝囝, 张昕. 雨季青藏高原东部MCC移动特征及其热动力原因分析[J]. 高原气象, 2018, 37(6): 1511-1527.
img

QQ群聊

img

官方微信