Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 317-324    DOI: 10.7522/j.issn.1000-0534.2017.00040
论文     
青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟
李燕, 闫加海, 张冬峰
山西省气候中心, 山西 太原 030006
Diagnosis and Simulation on the Relationship between Snow Depth over Qinghai-Tibetan Plateau and Summer Precipitation in Eastern China
LI Yan, YAN Jiahai, ZHANG Dongfeng
Shanxi Climate Center, Taiyuan 030006, Shanxi, China
 全文: PDF(6637 KB)  
摘要: 使用1980-2010年水平分辨率为25 km的遥感积雪深度资料和0.5°×0.5°降水观测资料分析了青藏高原(下称高原)冬春(12月至翌年5月)积雪异常和中国东部夏季(6-8月)降水的关系,然后通过区域气候模式RegCM4.1在高原冬春季、春季积雪异常强迫下的试验结果进行对比,进一步验证了高原积雪异常影响中国东部夏季降水的机理。遥感积雪深度和格点降水资料诊断分析表明高原冬春少雪,中国东部夏季降水从北向南呈"-+-+"分布;冬春多雪,降水从北向南呈"+-+-"分布。数值模拟试验结果表明,高原冬春积雪异常影响中国东部夏季降水异常,高原冬春少雪,中国东部夏季降水从北向南呈"+-"分布,高原春季少雪,中国东部夏季降水从北向南呈"+-+"分布;高原冬春季以及春季多雪情形下,中国东部夏季降水异常呈相反的空间分布。同时,数值模拟结果表明高原冬春或春季少(多)雪,东亚夏季风偏强(弱),中国东部夏季降水异常。
关键词: 青藏高原积雪夏季降水区域气候模式亚洲夏季风    
Abstract: Snow cover over Qinghai-Tibetan Plateau (QTP) is an important component of climate system in East Asia. Its depth shows strong inter-annual variability. It is understood that the variation of snow depth over QTP is strongly associated to the action of Asian monsoon. Summer precipitation is a constituent of the Asian monsoon, which has been used as an indicator of Asian summer monsoon activity. We employed climate diagnosis and numerical simulation method to test the mechanism that how the winter-spring (from December-to-May) snow depth anomaly over QTP effects the following summer (from June-to-August) precipitation distribution in eastern China. Firstly, this study used a remote sensing dataset with 25 km horizontal resolution and gridded (0.5°×0.5°) precipitation data from 1980 to 2010 to analysis the relationship between winter-spring snow depth over QTP and the following summer precipitation change over eastern China. Then, we setup sensitivity experiments with a regional climate model (RegCM4.1) to test the possible mechanism. The results show that:(1) Based on the snow depth data and the gridded precipitation data, there is a "-+-+" summer precipitation distribution pattern with latitude change (north to south) over eastern China in less winter-spring snow years, while there is a "+-+-" pattern in more winter-spring snow years. (2) The sensitivity experiments simulations show that a "+-"and "+-+" summer precipitation patterns from north to south in eastern China with the forcing of the less snow cover in winter-spring and spring over QTP, respectively. If there is more snow in winter-spring and spring over QTP, the following summer precipitation will present a contrary spatial distribution. (3) The simulations also show that anomaly of winter-spring snow depth over the Plateau can influence atmospheric circulation and lead to the anomaly of following summer precipitation in eastern China. The snow depth anomaly in spring plays a more important role than that in winter in effecting on summer precipitation and atmospheric circulation over eastern China. Although the paper has tried to explain how the snow cover over QTP effecting the following summer precipitation in eastern China, the climate anomaly is dominated by the combination of multi-impact factors. Moreover, the condition parameters in the sensitivity experiments are different from the actual situation. Hence, some difference exists between the simulation and observation data. Short-term climate prediction is a very difficult scientific question in atmospheric sciences, further study about the relationship between the abnormal atmospheric signal and the following climate effecting is needed to improve the skill of short-term climate prediction.
Key words: Snow depth over Qinghai-Tibetan Plateau    summer precipitation    regional climate model (RegCM4.1)    Asian summer monsoon
收稿日期: 2017-01-20 出版日期: 2018-04-28
ZTFLH:  P461+.6  
基金资助: 中国气象局气候变化专项(CCSF201509);山西省科技攻关项目(20130313029-2)
作者简介: 李燕(1989),女,山西寿阳人,博士研究生,主要从事于气候变化与气候预测.E-mail:yli08@lzu.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李燕
闫加海
张冬峰

引用本文:

李燕, 闫加海, 张冬峰. 青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J]. 高原气象, 2018, 37(2): 317-324.

LI Yan, YAN Jiahai, ZHANG Dongfeng. Diagnosis and Simulation on the Relationship between Snow Depth over Qinghai-Tibetan Plateau and Summer Precipitation in Eastern China. Plateau Meteorology, 2018, 37(2): 317-324.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00040        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/317

Blanford H F, 1884. On the connection of Himalayan snowfall and seasons of drought in India[J]. The Proceeding of the Royal Society of London, 37(232-234):3-22. DOI:10.1098/rspl. 1884.0003.
Che T, Li X, Jin R, et al, 2008. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 49(1):145-154. DOI:10.3189/172756408787814690.
Dee D P, Uppala S M, Simmons A J, et al, 2011. The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 137(656):553-597. DOI:10.1002/qj. 828.
Dickinson R E, Henderson-Sellers A, Kennedy P J, 1993. Biosphere-Atmosphere Transfer Scheme (bats) Version 1e as coupled to the NCAR Community Climate Model[R]. NCAR Technical Note NCAR/TN-387+STR. DOI:10.5065/D67W6959.
Gao X J, Wang M L, Giorgi F, 2013. Climate change over China in the 21st century as simulated by BCC-CSM1.1-RegCM4.0[J]. Atmos Oceanic Sci Lett, 6(5):381-386. DOI:10.3878/j. issn. 1674-2834.13.0029.
Gao X J, Xu Y, Zhao Z C, et al, 2006. On the role of resolution and topography in the simulation of East Asia precipitation[J]. Theor Appl Climatol, 86(1):173-185. DOI:10.1007/s00704-005-0214-4.
Giorgi F, Coppola E, Solmon F, et al, 2012. RegCM4:Model description and preliminary tests over multiple CORDEX domains[J]. Climate Res, 52(1):7-29. DOI:10.3354/cr01018.
Grell G, 1993. Prognostic evaluation of assumptions used by cumulus parameterizations[J]. Mon Wea Rev, 121(3):764-787.
Holtslag A, de Bruijin E, Pan H L, 1990. A high resolution air mass transformation model for short-range weather forecasting[J]. Mon Wea Rev, 118(8):1561-1575.
Kiehl J T, Hack J J, Bonan G B, et al, 1996. Description of the NCAR Community Climate Model (CCM3)[R]. NCAR Technical Note NCAR/TN-420+STR. DOI:10.5065/D6FF3Q99.
Kirtman B, Pirani A, 2009. The state of the art of seasonal prediction:outcomes and recommendations from the first world climate research program workshop on seasonal prediction[J]. Bull Amer Meteor Soc, 90(4):455-458. DOI:10.1175/2008BAMS2707.1.
Pal J S, Small E E, Eltahir E, 2000. Simulation of regional-scale water and energy budgets:Representation of subgrid cloud and precipitation processes within RegCM[J]. J Geophys Res, 105(D24):29579-29594. DOI:10.1029/2000JD900415.
Shi Y, Gao X J, Wu J, et al, 2011. Changes in snow cover over China in the 21st century as simulated by a high resolution regional climate model[J]. Environ Res Lett, 6(2011):1-8. DOI:10.1088/1748-9326/6/4/045401.
Walker G T, 1910. Correlation in seasonal variations of weather Ⅱ[J]. Memoirs of India Meteorological Department, 21(2):22-45.
Wang C H, Yang K, Li Y L, 2017. Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in Eastern China[J]. J Climate, 30(3):885-903. DOI:10.1175/JCLI-D-16-0041.1.
Yasunari T, Kitoh A, Tokioka T, 1991. Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate:A study with the MRI·GCM[J]. J Meteor Soc Japan, 69(4):473-487.
Zhang D F, Zakey A S, Gao X J, et al, 2009. Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model[J]. Atmos Chemistry and Phys, 9(4):1095-1110. DOI:10.5194/acp-9-1095-2009.
Zhao P, Zhou Z J, Liu J P, 2007. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall:An observational investigation[J]. J Climate, 20(15):3942-3955.
陈兴芳, 宋文玲, 2000. 冬季高原积雪和欧亚积雪对我国夏季旱涝不同影响关系的环流特征分析[J]. 大气科学, 24(5):585-592. Chen X F, Song W L, 2000. Circulation analysis of different influence of snow cover over the Tibetan Plateau and Eurasia in winter on summertime droughts and floods of china[J]. Chinese J Atmos Sci, 24(5):585-592.
过霁冰, 徐祥德, 施晓晖, 等, 2012. 青藏高原冬季积雪关键区视热源特征与中国西南春旱的联系[J]. 高原气象, 31(4):900-909. Guo J B, Xu X D, Shi X H, et al, 2012. Characteristics of winter apparent heat source in the key area of snow cover on Qinghai-Xizang Plateau and Spring Drought in Southwest China[J]. Plateau Meteor, 31(4):900-909.
李小兰, 张飞民, 王澄海, 2012. 中国地区地面观测积雪深度和遥感雪深资料的对比分析[J]. 冰川冻土, 34(4):755-764. Li X L, Zhang F M, Wang C H, 2012. Comparison and analysis of snow depth over China observed and derived from remote sensing[J]. Journal of Glaciology and Geocryology, 34(4):755-764.
罗小青, 杨梅学, 王学佳, 等, 2014. 两种积云参数化方案对青藏高原夏季降水影响的模拟[J]. 高原气象, 33(2):313-322. Luo X Q, Yang M X, Wang X J, et al, 2014. Simulation influences of summer precipitation by two cumulus parameterization schemes over Qinghai-Xizang Plateau[J]. Plateau Meteor, 33(2):313-322. DOI:10.7522/j. issn. 1000-0534.2013.00177.
宋燕, 李智才, 肖子牛, 等, 2016. 太阳活动与高原积雪及东亚环流的年代际相关分析[J]. 高原气象, 35(5):1135-1147. Song Y, Li Z C, Xiao Z N, et al, 2016. Analysis on interdecadal correlation between solar activity and snow depth over the Qinghai-Xizang Plateau and East Asian atmospheric circulation in winter[J]. Plateau Meteor, 35(5):1135-1147. DOI:10.7522/j. issn. 1000-0534.2015.00059.
王澄海, 孙超, 2013. 一个基于WRF+CLM区域气候模式(WRFC) 的建立及初步试验[J]. 高原气象, 32(6):1626-1637. Wang C H, Sun C, 2013. Design and preliminary test of the Regional Climate Model (WRFC) Based on Coupling WRF3.2 and CLM4.0[J]. Plateau Meteor, 32(6):1626-1637. DOI:10.7522/j. issn. 1000-0534.2013.00021.
王美丽, 高学杰, 石英, 等, 2015. RegCM模式对云南及周边地区干旱化趋势的预估[J]. 高原气象, 34(3):706-713. Wang M L, Gao X J, Shi Y, et al, 2015. Projection of the future drought over Yunnan and its surrounding areas by RegCM4[J]. Plateau Meteor, 34(3):706-713. DOI:10.75/j. issn. 1000-0534.2014.00013.
王顺久, 2017. 青藏高原积雪变化及其对中国水资源系统影响研究进展[J]. 高原气象, 36(5):1153-1164. Wang S J, 2017. Progresses in variability of snow cover over the Qinghai-Tibetan Plateau and its impact on water resources in China[J]. Plateau Meteor, 36(5):1153-1164. DOI:10.7522/j. issn. 1000-0534.2016.00117.
肖子牛, 2010. 我国短期气候监测预测业务进展[J]. 气象, 36(7):21-25. Xiao Z N. 2010. Advances of the short-Range climate monitoring and prediction in China[J]. Meteor Mon, 36(7):21-25.
徐小玉, 王亚非, 2016. 利用RegCM4.0模拟58月青藏高原异常加热的下游效应[J]. 高原气象, 35(5):1169-1181. Xu X Y, Wang Y F, 2016. Simulation of the effect of Qinghai-xizang Plateau anomalous heating on the downstream flow from May to August RegCM 4.0[J]. Plateau Meteor, 35(5):1169-1181. DOI:10.7522/j. issn. 1000-0534.2015.00058.
杨凯, 胡田田, 王澄海, 2017. 青藏高原南、北积雪异常与中国东部夏季降水关系的数值试验研究[J]. 大气科学, 41(2):345-356. Yang K, Hu T T, Wang C H, 2017. A numerical study on the relationship between the spring-winter snow cover anomalies over the northern and southern Tibetan Plateau and summer precipitation in East China[J]. Chinese J Atmos Sci, 41(2):345-356. DOI:10.3878/j. issn. 1006-9895.1604.16119.
张冬峰, 高学杰, 白虎志, 等, 2005. RegCM3模式对青藏高原地区气候的模拟[J]. 高原气象, 24(5):714-720. Zhang D F, Gao X J, Bai H Z, et al, 2005. Simulation of climate over Qinghai Xizang Plateau utilizing RegCM3[J]. Plateau Meteor, 24(5):714-720.
赵煜飞, 朱江, 许燕, 2014. 近50a中国降水格点数据集的建立及质量评估[J]. 气象科学, 34(4):414-420. Zhao Y F, Zhu J, Xu Y, 2014. Establishment and assessment of the grid precipitation datasets in China for recent 50 years[J]. J Meteor Sci, 34(4):414-420. DOI:10.3969/2013jms. 0008.
周利敏, 陈海山, 彭丽霞, 等, 2016. 青藏高原冬春雪深年代际变化与南亚高压可能联系[J]. 高原气象, 35(1):13-23. Zhou L M, Chen H S, Peng L X, et al, 2016. Possible connection between interdecadal variations of snow depth in winter and spring over Qinghai-Xizang Plateau and South Asia High in summer[J]. Plateau Meteor, 35(1):13-23. DOI:10.7522/j. issn. 1000-0534.2014.00152.
[1] 周利敏, 陈海山, 彭丽霞, 许蓓. 青藏高原冬春雪深年代际变化与南亚高压可能联系[J]. 高原气象, 2016, 35(1): 13-23.
[2] 魏丽, 李栋梁 . NCEP/NCAR再分析资料在青藏铁路沿线气候变化研究中的适用性 [J]. 高原气象, 2003, 22(5): 488-494.
[3] 李栋梁, 冯建英, 陈雷, 刘洪兰, 张杰 . 黑河流量和祁连山气候的年代际变化 [J]. 高原气象, 2003, 22(2): 104-110.
img

QQ群聊

img

官方微信