Please wait a minute...
高级检索
高原气象  2011, Vol. 30 Issue (6): 1584-1593    
论文     
海洋混合层厚度对热带气旋结构和强度变化影响的数值试验
1. 南京信息工程大学, 江苏 南京210044;  2. 中国气象局 上海台风研究所/中国气象局台风预报技术重点实验室,
上海200030; 3. 中国气象局 中国气象科学研究院, 北京100081
Numerical Experiments of the Effect of  Oceanic Mixing
Layer Depth on  TC Structure and Intensity Changes
 全文: PDF(1092 KB)  
摘要: 利用高分辨率大气模式WRF(Weather Research Forecast)耦合了简单的海洋混合层模式, 设计了不同海洋初始混合层厚度条件下的数值试验, 研究了不同混合层厚度对热带气旋 (TC) 结构和强度的影响。结果表明, 当TC经过海洋混合层厚度较浅海域时, TC对应的海洋底层的冷水更易上翻, 最冷中心区出现在TC大风中心右后方160~240 km处, 海表面温度最大降温值可达-7 ℃, 使其右后方的总表面热量通量交换显著减少, 导致TC强度显著变弱; 海洋冷却作用还会增强TC结构的非对称性, 这与海洋冷却作用的非对称造成TC在边界层附近的涡度和散度平流分布不均密切相关。
关键词: 热带气旋海洋混合层数值模拟    
Abstract: The effect of the oceanic mixing layer depth on the  tropical cyclone(TC) structure and intensity changes is investigated by using three sensitivity experiments, coupled the high resolution and non-hydrostatic idealized WRF  model with a simple one-dimensional oceanic mixing layer model. The results show that, when the TC passes the region with a thin oceanic mixing layer, the surface heat flux is mainly reduced by the oceanic upwelling in the rear-right quadrant of TC center region with the sea surface temperature up to -7 ℃, is occurred in the rear-right of 160~240 km of  TC maximum wind center, which is also leading to the increasing of  TC asymmetric structure and the decreasing in  TC intensity. And it is also found that the TC asymmetric structure is closely related to the distribution of the vorticity and divergence advection from oceanic cooling in the boundary layer of  TC.Key words: Tropical cyclone;   Oceanic mixing layer;  Numerical simulation
出版日期: 2011-12-25
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾智华
陈联寿

引用本文:

曾智华, 陈联寿. 海洋混合层厚度对热带气旋结构和强度变化影响的数值试验[J]. 高原气象, 2011, 30(6): 1584-1593.

ZENG Zhi-Hua, CHEN Lian-Shou. Numerical Experiments of the Effect of  Oceanic Mixing
Layer Depth on  TC Structure and Intensity Changes. PLATEAU METEOROLOGY, 2011, 30(6): 1584-1593.

链接本文:

http://www.gyqx.ac.cn/CN/        http://www.gyqx.ac.cn/CN/Y2011/V30/I6/1584

[1]Emanuel K A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance [J]. J Atmos Sci, 1986, 43(6): 585-605.

[2]Emanuel K A. The finite-amplitude nature of tropical cyclogenesis[J]. J Atmos Sci, 1989, 46(22): 3431-3456.

[3]Emanuel K A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics[J]. J Atmos Sci, 1995, 52(22): 3969-3976.

[4]Yano J, Emanuel K A. An improved model of the equatorial troposphere and its coupling with the atmosphere[J]. J Atmos Sci, 1991, 48(3): 377-389.

[5]Sanford T B, Black P G, Haustein J R, et al. Ocean response to a hurricane. Part I: Observations[J]. J Phys Oceanogr, 1987, 17:  2065-2083.

[6]Shay L K, Black P G, Mariano A J, et al. Upper ocean response to hurricane Gilbert[J]. J Geophys Res, 1992, C12: 20277-20248.

[7]Lin I I, Liu W T, Wu C C, et al. Satellite observations of modulation of surface winds by typhoon-induced ocean cooling[J]. Geophys Res Lett, 2003, 30 (3): 10.1029/2002GL015674.

[8]Sutyrin G G, Khain A P. Effect of the ocean-atmosphere interaction on the intensity of a moving tropical cyclone[J]. Atmos Oceanic Phys, 1984, 20:  787-794.

[9]Bender M A, Ginis I, Kurihara Y. Numerical simulations of tropical cyclone-ocean interaction with a high resolution coupled model[J]. J Geophys Res, 1993, 98: 23245-23263.

[10] Bao J W, Wilczak J M, Choi J K, et al. Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development[J]. Mon Wea Rev, 2000, 128(7): 2190-2210.

[11] Cubukcu N, Pfeffer R L, Dietrich D E. Simulation of the effects of bathymetry and land-sea contrasts on hurricane development using a coupled ocean-atmosphere model[J]. J Atmos Sci, 2000, 57: 481-492.

[12] Chan J C L, Duan Y H, Shay L K. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model[J]. J Atmos Sci, 2001, 58(2): 154-172.

[13] 曾智华. 大气混合层高度的模式计算和分析[J]. 高原气象, 2004, 23(3): 368-373.

[14] 蒋兴文, 李跃清, 王鑫, 等.青藏高原东部及下游地区冬季边界层的观测分析[J]. 高原气象, 2009, 28(4): 754-762.

[15] 李岩瑛, 钱正安, 薛新玲, 等. 西北干旱区夏半年深厚的混合层与干旱气候形成[J]. 高原气象, 2009, 28(1): 46-54.

[16] 杨胜朋, 吕世华, 陈玉春, 等. 人为热源和城市绿化对冬季山谷城市边界层结构影响的数值模拟[J]. 高原气象, 2009, 28(2): 268-277.

[17] Kraus E B, Turner J S. A one-dimensional of the seasonal thermocline Ⅱ. The general theory and its consequences[J]. Tellus, 1967, 19: 98-105.

[18] Niiler P P, Kraus E B. One-dimensional models of the upper ocean[M]//Kraus E B ed. Modelling and Prediction of the upper layer of the ocean.  Pergamon Press, 1977: 143-172.

[19] Geisler J E. Linear theory of the response of a two layer ocean to a moving hurricane[J]. Geophys Fluid Dyn, 1970, 1(1): 249-272.

[20] Elsberry R L, Fraim T, Trapnell R. A mixed layer model of the oceanic thermal response to hurricanes[J]. J Geophys Res, 1976, 81(6): 1153-1162.

[21] Price J F. Upper ocean response to a hurricane[J]. J Phys Oceanogr, 1981, 11: 153-175.

[22] Chang S W, Anthes R A. Numerical simulations of the ocean's nonlinear baroclinic response to translating hurricanes[J]. J Phys Oceanogr, 1978, 8:  468-480.

[23] Chang S W, Anthes R A. The mutual response of the tropical cyclone and the ocean[J]. J Phys Oceanogr, 1979, 9: 128-135.

[24] Sutyrin G G, Khain A P, Agrenich E A. Interaction of the boundary layers of the ocean and the atmosphere on the intensity of a moving tropical cyclone[J].  Meteor Girol, 1979, 2: 45-56.

[25] Ginis I, Dikinov Kh Zh, Khain P. A three-dimensional model of the atmosphere and the ocean in the zone of typhoon[J]. Dokl Akad Sci USSR, 1989, 307: 333-337.

[26] Khain A P. Three-dimensional numerical model of a tropical tropical cyclone including beta-effect[J]. Atmos Oceanic Phys, 1988, 24: 359-366.

[27] Ginis I, Dikinov Kh Zh. Modeling of the typhoon Virginia (1978) forcing on the ocean[J]. Sov Meteor Hydrol  Engl  Transl, 1989, 7: 53-60.

[28] Bender M A. The effect of relative flow on the asymmetric structure in the interior of hurricanes[J]. J Atmos Sci, 1997, 54: 703-724.

[29] Zeng Z, Wang Y, Wu C C. Environmental dynamical control of tropical cyclone intensity\_\_An observational study[J]. Mon Wea Rev, 2007, 135: 38-59.

[30] Zeng Z, Chen L S, Wang Y. An observational study of environmental dynamical control of tropical cyclone intensity in the North[J]. Mon Wea Rev, 2008, 136:  3307-3322.

[31] Zeng Z, Wang Y, Chen L S. A statistical analysis of vertical shear effect on tropical cyclone intensity change in the North Atlantic[J]. Geophys Res Lett, 2010, 37: L02802, doi:10.1029/2009GL041788.

[32] Schade L R, Emanuel K A. The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model[J]. J Atmos Sci, 1999, 56: 642-651.

[33] Zhu H, Ulrich W, Smith R K. Ocean effects on tropical cyclone intensification and inner-core asymmetries[J]. J Atmos Sci, 2004, 61(11): 1924-1944.

[34] Zeng Z, Wang Y, Duan Y, et al. On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity[J]. Adv Atmos Sci, 2010, 27(2): 337-355.

[35] 范聪慧. 多因素对海洋上混合层深度影响的数值模拟[D]. 北京: 中国科学院研究生院, 2007.

[36] Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 2006, 134: 2318-2341.

[37] Wang Y. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equaton model: TCM3. Part Ⅰ: Model description and control experiment[J]. Mon Wea Rev, 2001, 129: 1370-1394.

[38] Wang Y. A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model-TCM4: Model description and development of asymmetries without explicit asymmetric forcing[J]. Meteor Atmos Phys, 2007, 97(1-4): 93-116.

[39] Gray M W, Ruprecht E, Phelps R. Relative humidity in tropical weather systems[J]. Mon Wea Rev, 1975, 103: 685-690.

[40] Chan J C L, Liang X. Convective asymmetries associated with tropical cyclone landfall. Part I: f-plane simulations[J]. J Atmos Sci, 2003, 60(13): 1560-1576.

[41] Sharpio L J. The asymmetric boundary layer flow under a translating hurricane[J]. J Atmos Sci, 1983, 40(8): 1984-1998.

[42] Frank W M, Ritchie E A. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes[J]. Mon Wea Rev, 2001, 129: 2249-2269.
[1] 王梦旖, 谭涌波, 师正, 刘俊, 于梦颖, 郑天雪. 大气冰核谱对雷暴云微物理过程及起电影响的数值模拟[J]. 高原气象, 2019, 38(3): 593-603.
[2] 周荣卫, 何晓凤. 新疆哈密复杂地形风场的数值模拟及特征分析[J]. 高原气象, 2018, 37(5): 1413-1427.
[3] 章焕, 范广洲, 张永莉, 赖欣. 青藏高原土壤湿度对一例高原涡影响的数值模拟[J]. 高原气象, 2018, 37(4): 886-898.
[4] 栾澜, 孟宪红, 吕世华, 韩博, 李照国, 赵林, 李瑞青. 青藏高原土壤湿度触发午后对流降水模拟试验研究[J]. 高原气象, 2018, 37(4): 873-885.
[5] 顾婷婷, 李晓丽, 刘丹妮, 潘娅英. 舟山跨海大桥一次强冷空气过程的精细化风场模拟[J]. 高原气象, 2018, 37(4): 1074-1082.
[6] 苏东生, 胡秀清, 文莉娟, 赵林, 李照国. 青海湖热力状况对气候变化响应的数值研究[J]. 高原气象, 2018, 37(2): 394-405.
[7] 罗雄, 李国平. 一次高原切变线过程的数值模拟与阶段性结构特征[J]. 高原气象, 2018, 37(2): 406-419.
[8] 李宏毅, 肖子牛, 朱玉祥. 藏东南草地下垫面地气通量交换日变化的数值模拟[J]. 高原气象, 2018, 37(2): 443-454.
[9] 师宇, 楼小凤, 单云鹏, 胡非. 北京地区一次降雪过程的人工催化数值模拟研究[J]. 高原气象, 2017, 36(5): 1276-1289.
[10] 周旭, 张镭, 陈丽晶, 郭琪. 沙尘暴过程中沙尘气溶胶对气象场的影响[J]. 高原气象, 2017, 36(5): 1422-1432.
[11] 周旭, 张镭, 陈丽晶, 郭琪. 沙尘暴过程中沙尘气溶胶对气象场的影响[J]. 高原气象, 2017, 36(5): 1422-1432.
[12] 师宇, 楼小凤, 单云鹏, 胡非. 北京地区一次降雪过程的人工催化数值模拟研究[J]. 高原气象, 2017, 36(5): 1276-1289.
[13] 许威杰, 张耀存. 凝结潜热加热与对流反馈对一次高原低涡过程影响的数值模拟[J]. 高原气象, 2017, 36(3): 763-775.
[14] 贾东于, 文军, 马耀明, 刘蓉, 王欣, 周娟, 陈金雷. 植被对黄河源区水热交换影响的研究[J]. 高原气象, 2017, 36(2): 424-435.
[15] 陈贵川, 吴钲, 谌芸, 李强, 朱岩. 中低层增温对强降水中涡旋形成的敏感性研究[J]. 高原气象, 2016, 35(6): 1498-1511.
img

QQ群聊

img

官方微信