Please wait a minute...
高级检索
高原气象  2014, Vol. 33 Issue (2): 474-482    DOI: 10.7522/j.issn.1000-0534.2012.00191
论文     
中国高分辨率地表粗糙度分布研究
李沁怡, 蔡旭晖, 宋宇
北京大学 环境科学与工程学院/环境模拟与污染控制国家重点联合实验室, 北京 100871
Research of the Distribution of National Scale Surface Roughness Length with High Resolution in China
LI Qinyi, CAI Xuhui, SONG Yu
College of Environmental Sciences and Engineering, Peking University, State Joint Key Lab of Environmental Simulation and Pollution Control, Beijing 100871, China
 全文: PDF(3814 KB)  
摘要:

利用2010年欧洲空间局(ESA)最新发布的高分辨率全球土地覆盖卫星观测数据,研究中国地区的地表粗糙度分布。参考两个常用气象模式CALMET和WRF中有关土地覆盖类型与地表粗糙度的分配方案,分别建立ESA土地覆盖类型数据与地表粗糙度的映射关系,编制了水平分辨率约300 m的中国地表粗糙度分布,并与实际观测数据进行比较分析。结果表明:(1)使用ESA土地覆盖类型数据有利于反映地表粗糙度更细致的空间分布,但无法反映城市区域内部的粗糙度变化;(2)基于CALMET模式的映射关系给出的地表粗糙度数值系统偏高;(3)基于WRF模式的映射关系能够给出更合理的地表粗糙度,与实际观测更相符,并可部分反映地表粗糙度的季节变化。

关键词: 地表粗糙度土地覆盖高分辨率卫星资料    
Abstract:

The normal methods of calculating the surface roughness length were summarized, both with and without observation. In addition, some widely used ways of deriving surface roughness length with remote sensing data were presented as well. The high resolution global land cover data based on satellite observation published lately by European Space Agency (ESA) was utilized to study the distribution of surface roughness length in China. The relationship between ESA land cover categories and surface roughness length was established, which referred to the schemes assigning surface roughness length according to land cover categories used in two common meteorology models—CALMET and WRF, and was utilized to produce the distribution of surface roughness length about 300 m resolution at national scale of China, and comparised with the observation data published by other researchers. The results show that: (1) ESA land cover data could reflect the fine space distribution of surface roughness length but failed in the roughness changes in urban area. (2) The surface roughness length values based on the mapping relationship used in CALMET model were systematic high. (3) The surface roughness length values based on the assigning relationship used in WRF tended to be more reasonable and more consistent with the practical observation, including the seasonal variation of surface roughness length.

Key words: Surface roughness length    Land cover    High resolution    Satellite remote sensing data
收稿日期: 2012-05-13 出版日期: 2014-04-24
:  P404  
基金资助:

国家重点基础研究发展规划项目(2010CB428501);国家高技术研究发展计划项目(2008AA06A415,2009AA06A41802);财政部/科技部公益性行业(气象)科研专项(GYHY201006014)

通讯作者: 蔡旭晖. E-mail:xhcai@pku.edu.cn     E-mail: xhcai@pku.edu.cn
作者简介: 李沁怡(1988), 男,广东人,硕士研究生,主要从事大气物理与大气环境研究. E-mail:frank.liqy@gmail.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李沁怡
蔡旭晖
宋宇

引用本文:

李沁怡, 蔡旭晖, 宋宇. 中国高分辨率地表粗糙度分布研究[J]. 高原气象, 2014, 33(2): 474-482.

LI Qinyi, CAI Xuhui, SONG Yu. Research of the Distribution of National Scale Surface Roughness Length with High Resolution in China. PLATEAU METEOROLOGY, 2014, 33(2): 474-482.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2012.00191        http://www.gyqx.ac.cn/CN/Y2014/V33/I2/474

[1] Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn StateNCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Mon Wea Rev, 2001, 129: 569-585.

[2] Hasager C B, Nielsen N W, Jensen N O, et al. Effective roughness calculated from satellite-derived land cover maps and hedge-information used in a weather forecasting model[J]. Bound-Layer Meteor, 2003, 109(3): 227-254.

[3] Kitwiroon N, Sokhi R S, Luhana L, et al. Improvements in air quality modelling by using surface boundary layer parameters derived from satellite land cover data[J]. Water Air Soil Pollut Focus 2, 2002: 29-41.

[4] Ma W, Ma Y, Hu Z, et al. Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery[J]. Hydrology and Earth System Sciences, 2011, 15(5): 1403-1413.

[5] Nielsen M, Astrup P, Hasager C B, et al. Satellite information for wind energy applications[R]. Denmark Ris National Laboratory, http://www.risoe.dtu.dk/rispubl/VEA/veapdf/ris-r-1479.pdf, 2004.

[6] 陈斌, 徐祥德, 丁裕国, 等. 地表粗糙度非均匀性对模式湍流通量计算的影响[J]. 高原气象, 2010, 29 (2): 340 - 348.

[7] 范广洲, 吕世华. 陆面植被类型对华北地区夏季降水影响的数值模拟研究[J]. 高原气象, 1999, 18(4) : 649-658.

[8] 孙俊, 胡泽勇, 陈学龙, 等. 黑河中上游不同下垫面动量总体输送系数和地表粗糙度对比分析[J]. 高原气象, 2012, 31(4): 920-926.

[9] Bontemps S, Van Bogaert E, Defourny P, et al. GlobCover 2009Products Description Manual version 1.0[R]. http://ionia1.esrin.esa.int/, 2010.

[10] Garratt J R. The Atmospheric Boundary Layer[M]. New York: Cambridge University Press, 1992: 45-53.

[11] Lettau H. Note on aerodynamic roughness-parameter estimation on the basis of roughness element description[J]. J Appl Meteor, 1969, 8: 828-832.

[12] Fielder F, Panofsky H A. The geostrophic drag coefficient and the effective roughness length[J]. Quart J Roy Meteor Soc, 1972, 98: 213-220.

[13] Mason P J. The formation of areally-averaged roughness lengths[J]. Quart J Roy Meteor Soc, 1988, 114: 399-420.

[14] Smith F B, Carson D J. Some thoughts on the specification of the boundary-layer relevant to numerical modeling[J]. Bound-Layer Meteor, 1977, 12: 307-330.

[15] Taylor P A. Comments and further analysis on effective roughness lengths for use in numerical three-dimensional models[J]. Bound-Layer Meteor, 1987, 39: 403-418.

[16] Baldauf M, Fiedler F. A parameterisation of the effective roughness length over inhomogeneous, flat terrain[J]. Bound-Layer Meteor, 2003, 106(2): 189-216.

[17] Kondo J, Yamazawa H. Aerodynamic roughness over an inhomogeneous ground surface[J]. Bound-Layer Meteor, 1986, 35: 331-348.

[18] Lu L, Liu S, Xu Z, et al. The Characteristics and Parameterization of Aerodynamic Roughness Length over Heterogeneous Surfaces[J]. Adv Atmos Sci, 2009, 26(1): 180-190.

[19] Dickinson R E, Henderson-sellers A, Kennedy P J. Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Mode[R]. National Center for Atmospheric Research (NCAR) Technical Note, NCAR/TN-387+STR, 1993.

[20] Xiu A, Pleim J E. Development of a land surface model. Part I: Application in a mesoscale meteorological model[J]. J Appl Meteor, 2001, 40: 192-209.

[21] Raupach M R. Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index[J]. Bound-Layer Meteor, 1994, 71: 211-216.

[22] Dellwik E, Landberg L, Jenson N O. WAsP in the Forest[J]. Wind Energy, 2006, 9: 211-218.

[23] Dai Y J, Zeng X, Dickinson R E. The common land model[J]. Bull Amer Meteor Soc, 2003, 84(8): 1013- 1023.

[24] Jia L, Coauthors. Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements[J]. Phys Chem Earth, 2003, 28: 75-88.

[25] Atterberg R, Wieringa J. Mesoscale terrain roughness mapping of the Netherlands[J]. Royal Netherlands Meteorological Institute Technical Report, TR-115, http://www6.knmi.nl/bibliotheek/knmipubTR/TR115.pdf, 1989.

[26] Deursen W P A van, Kloditz E C, Boxtel A M J V, et al. European scale roughness length mapping using remote sensing(Interim report)[R]. Zuiderstraat 110. 2611 SJ Delft, The Netherlands, 1994.

[27] Mortensen N G, Landberg L, Troen I. WAsP Utility Programs[R]. http://www.wasp.dk/Download/PreviousVersions/WUPs31_Description.aspx, 2004.

[28] Troen I, Petersen E L. The European Wind Atlas[R]. Roskilde, Denmark Ris National Laboratory, 1989.

[29] 尚伦宇, 吕世华, 张宇, 等. 青藏高原东部土壤冻融过程中地表粗糙度的确定[J] . 高原气象, 2010, 29(1): 17-22.

[30] 张文煜, 张宇, 陆晓静, 等. 黄土高原半干旱非均一下垫面粗糙度分析[J]. 高原气象, 2009, 28(4): 763-768.

[31] 胡文超, 张文煜, 张宇, 等. 河西走廊下垫面粗糙度实测值与模拟值的差异性分析[J]. 高原气象, 2010, 29(1): 51-55.

[32] Fritz S, Bartholome E, Belward A, et al. Harmonisation, mosaicing and production of the global land cover 2000 database[R]. European Commission Joint Research Center, http://publications.jrc.ec.europa.eu/repository/handle/111111111/271, 2003.

[33] USGS. Land use and land cover data from 1∶250,000 and 1∶100,000scale maps. U.S. Geological Survey Data Users Guide Number 4[R]. Reston, Virginia, U.S. Geological Survey, 1986.

[34] Scire J S, Robe F R, Fernau M E. A User's Guide for the CALMET Meteorological Model (version 5)[R]. Earth Tech Inc, http://www.src.com/calpuff/download/CALMET_Us ersGuide.pdf, 2012-04.

[35] Skamarock W C, Klemp J B, Dudhia J. A Description of the Advanced Research WRF Version3[R]. NCAR Technical Note, NCAR/TN-475+STR, http://www.mmm.ucar.edu/wrf/users/docs/arw-v3.pdf, 2012-04.

[36] Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. Int J Remote Sens, 1998, 19(8): 1533-1543.

[37] Liu G, Sun J N. Impact of surface variations on the momentum flux above the urban canopy[J]. Theor Appl Climatol, 2010, 101(3-4): 411-419.

[38] Wang J, Bastiaanssen W G M, Ma Y, et al. Aggregation of land surface parameters in the oasis-desert systems of north-west China[J]. Hydrological Processes, 1998, 12: 2133-2147.

[39] Feng J W, Liu H Z, Wang L, et al. Seasonal and inter-annual variation of surface roughness length and bulk transfer coefficients in a semiarid area[J]. Science China: Earth Sciences, 2012, 55(2): 254-261.

[1] 刘啸然, 李茂善, 胡文斌. 藏北高原那曲地区不同下垫面地表粗糙度的变化特征研究[J]. 高原气象, 2019, 38(2): 428-438.
[2] 许建玉. 鄂东暖区暴雨个例的高分辨率模拟对边界层方案的敏感性[J]. 高原气象, 2018, 37(5): 1313-1324.
[3] 薛童, 管兆勇, 徐建军, 邵旻. ATMS和CrIS卫星资料同化对青藏高原天气预报的影响[J]. 高原气象, 2017, 36(4): 912-929.
[4] 冯蕾, 周天军. 20 km高分辨率全球模式对青藏高原夏季降水变化的预估[J]. 高原气象, 2017, 36(3): 587-595.
[5] 刘建军, 陈葆德. 基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J]. 高原气象, 2017, 36(3): 632-642.
[6] 丁治英, 王一颉, 刘瑞翔. 青藏高原一次MCC转MCV过程研究[J]. 高原气象, 2016, 35(3): 561-573.
[7] 艾永智, 杨传荣, 李蕊. 玉溪一次强对流天气的中尺度特征分析[J]. 高原气象, 2015, 34(5): 1391-1401.
[8] 牛金龙, 黄楚惠, 李国平, 唐钱奎. 基于高分辨率资料的湿螺旋度指标及其对成都强降水的预报应用[J]. 高原气象, 2015, 34(4): 942-949.
[9] 何光碧, 彭俊, 屠妮妮. 基于高分辨率地形数据的模式地形构造与数值试验[J]. 高原气象, 2015, 34(4): 910-922.
[10] 潘留杰, 张宏芳, 王建鹏, 宁志谦. 日本高分辨率模式对中国降水预报能力的客观检验[J]. 高原气象, 2014, 33(2): 483-494.
[11] 文小航1-2,吕世华2,董文杰1,奥银焕2. 西北干旱区绿洲—戈壁资料同化数据集的建立与分析[J]. 高原气象, 2014, 33(1): 66-79.
[12] 刘瑞霞1,徐祥德2,刘玉洁1. JICA综合观测与卫星数据在高原地区三维云和水汽场构建中的应用[J]. 高原气象, 2013, 32(6): 1589-1596.
[13] 刘磊1-2, 高晓清1*, 陈伯龙1, 3, 汪宁渤4. 大规模风电场建成后对风能资源影响的研究[J]. 高原气象, 2012, 31(4): 1139-1144.
[14] 孙俊1-2, 胡泽勇1*, 陈学龙3, 张敏2, 何慧根4, 张渝杰2. 黑河中上游不同下垫面动量总体输送系数和
地表粗糙度对比分析
[J]. 高原气象, 2012, 31(4): 920-926.
[15] 陈科艺, 彭志强. 应用OMI卫星资料监测蒙古戈壁沙尘的传播[J]. 高原气象, 2012, 31(3): 798-803.
img

QQ群聊

img

官方微信