Please wait a minute...
高级检索
高原气象  2017, Vol. 36 Issue (6): 1487-1498    DOI: 10.7522/j.issn.1000-0534.2017.00009
论文     
一个新的青藏高原热力指数的构建及其应用
贲海荣1,2, 周顺武1, 乔钰1,3, 单幸1, 李强4
1. 南京信息工程大学气象灾害教育部重点实验室/气象灾害预报预警与评估协同创新中心/气候与环境变化国际合作 联合实验室, 江苏 南京 210044;
2. 台州市气象局, 浙江 台州 318000;
3. 山西省气象台, 山西 太原 030006;
4. 中国气象局华风影视集团, 北京 100081
Construction and Applicaion of a New Index about the Qinghai-Tibetan Plateau Heating
BEN Hairong1,2, ZHOU Shunwu1, QIAO Yu1,3, SHAN Xing1, LI Qiang4
1. Key Laboratory of Meteorological Disaster, Ministry of Education(KLME), Joint International Research Laboratory of Climate and Environment Change(ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
2. Taizhou Meteorological Bureau, Taizhou 318000, Zhejiang, China;
3. Shansi Meteorological Observatory, Taiyuan 030006, Shanxi, China;
4. Huafeng Group of Meteorological Audio & Video Information, China Meteorological Administration, Beijing 100081, China
 全文: PDF(4311 KB)  
摘要: 利用1979-2014年ERA-Interim再分析月平均温度资料,分析了对流层中上层(500~150 hPa)温度纬向偏差的分布特征,并将青藏高原(下称高原)对流层中上层温度纬向偏差进行垂直积分后,尝试构建一个新的表征高原热力指数(Plateau Heating Index,PHI),并分析该指数的季节演变特征及其与东亚大气环流的关系。结果表明:(1)对流层中上层纬向温度偏差的暖中心存在着季节性的移动,即春季暖中心由西太平洋迅速移至高原,而秋季则快速东移到西太平洋;(2) PHI在年进程上呈现出明显的单峰型变化特征,在11月至翌年2月为负值,其余为正值;(3)各季PHI与纬向西风的显著相关区大致以30°N为界,呈现出北正南负的反向分布。当PHI增强时,高原北(南)部西风增强(减弱),副热带西风急流增强,反之亦然;(4)各季PHI与200 hPa位势高度的显著正相关均出现高原上空,表明高原对流层加热有利于其上空位势高度的增加。当夏季PHI偏强(弱)时,对应着南亚高压偏强(弱)。
关键词: 青藏高原对流层中上层温度纬向偏差热力指数副热带西风急流南亚高压    
Abstract: Based on the ERA-Interim reanalysis data of monthly mean temperature in recent 36 years (1979-2014), distributions of zonal deviation temperature in the mid-upper troposphere (500~150 hPa) are analyzed. According to the distributions, a new index by averaging in the zonal temperature deviation over the Qinghai-Tibetan Plateau (QTP) from 500 to 150 hPa is introduced to measure the thermal forcing of the plateau. The index is called Plateau Heating Index (short for PHI). And seasonal variations of the index and its relationships with the circulation are also studied. The results show that the warm center of zonal temperature deviation in the mid-upper troposphere changes monthly. The main regular pattern shows that the warm center moves rapidly from Western Pacific to Qinghai-Tibetan Platea in spring, then moves to Western Pacific rapidly in autumn again. Changes of monthly PHI show a single maximum, which appears in July. And except the time from November to next February, the value of the PHI is always positive. Additionally, using monthly mean zonal winds and the potential height from ERA-Interim reanalysis data in recent 36 years (1979-2014), some patterns between the PHI and circulation in East Asia are found and they are also interesting. For the zonal winds in East Asia, the boundary of the positive and negative correlation coefficients between the zonal winds with PHI is located near 30°N in latitude. For specific performance, the correlation coefficients are positive in the north of the border and negative in the south of the border. Refer to the thermal wind relationship, the characteristic means that the westerly winds strengthen in the north of QTP and the westerly winds weaken in the south of QTP when PHI is strong, and vice versa. That is to say that the strong PHI benefits the strength of the subtropical westerly jets. Besides, the correlation coefficients between PHI and the potential height on 200 hPa over QTP are always positive, which indicates the heating in the troposphere in favorable to the increase of potential height over QTP. For further interpretation, the abnormality of PHI in summer can characterize the change of the South Asia High. When the value of PHI in summer is high (low), the anomaly of potential height over the plateau is positive (negative), and the South Asia High is strong (weak).
Key words: Qinghai-Tibetan Plateau (QTP)    mid-upper troposphere    zonal deviation of temperature    heating index    subtropical westerly jet    South Asia high
收稿日期: 2016-08-03 出版日期: 2017-12-20
ZTFLH:  P461  
基金资助: 国家重点研发计划课题(2016YFA0602003);国家自然科学基金项目(91337218,41605039)
通讯作者: 周顺武.E-mail:zhou@nuist.edu.cn     E-mail: zhou@nuist.edu.cn
作者简介: 贲海荣(1992),女,江苏人,硕士研究生,主要从事气候动力学研究.E-mail:rong@nuist.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贲海荣
周顺武
乔钰
单幸
李强

引用本文:

贲海荣, 周顺武, 乔钰, 单幸, 李强. 一个新的青藏高原热力指数的构建及其应用[J]. 高原气象, 2017, 36(6): 1487-1498.

BEN Hairong, ZHOU Shunwu, QIAO Yu, SHAN Xing, LI Qiang. Construction and Applicaion of a New Index about the Qinghai-Tibetan Plateau Heating. PLATEAU METEOROLOGY, 2017, 36(6): 1487-1498.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00009        http://www.gyqx.ac.cn/CN/Y2017/V36/I6/1487

Berrisford P, Kallberg P, Kobayashi S, et al, 2011. Atmospheric conservation properties in ERA-Interim[J]. Quart J Roy Meteor Soc, 137(659):1381-1399.
Chen J, Wu X, Yin Y, et al, 2015. Characteristics of heat sources and clouds over east China and Tibetan Plateau in boreal summer[J]. J Climate, 28(18):7279-7296.
Chen L X, Schmidt F, Li W, 2003. Characteristics of the atmospheric heat source and moisture sink over the Qinghai-Tibetan Plateau during the second TIPEX of summer 1998 and their impact on surrounding monsoon[J]. Meteor Atmos Phys, 83(1):1-18.
Dai A, Li H, Sun Y, et al, 2013. The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons[J]. J Geophys Res Atmos, 118, 7024-7045.
Duan A M, Wu G X, 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dyn, 24(7):793-807.
Duan A M, Wu G X, Liang X Y, 2008. Influence of the Tibetan Plateau on the summer climate patterns over Asia in the IAP/LASG SAMIL model[J]. Adv Atmos Sci, 25(4):518-528.
Hsu H H, Liu X, 2003. Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall[J]. Geophys Res Lett, 30(20):1182-1200.
Hsu H H, Zhou T, Matsumoto J, 2014. East Asian, Indochina and Western North Pacific summer monsoon-an update[J]. Asia-Pacific Journal of Atmospheric Sciences, 50(1):45-68.
Li C, Yanai M, 1996. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast[J]. J Climate, 9(2):358-375.
Qian Y, Zhang Q, Yao Y, et al, 2002. Seasonal variation and heat preference of the South Asia High[J]. Adv Atmos Sci, 19(5):821-836.
Yanai M, Esbensen S, Chu J H, 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets[J]. J Atmos Sci, 30(4):611-627.
Yang K, Wu H, Qin J, et al, 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J]. Global & Planetary Change, 112(1):79-91.
Ye D, 1980. Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood[J]. Bull Amer Meteor Soc, 62(1):14-19.
Zhang R H, Zhou S W, 2009. Air temperature changes over the Tibetan Plateau and other regions in the same latitudes and the role of ozone depletion[J]. Acta Meteor Sinica, 23(3):290-299.
敖婷, 李跃清, 2015. 夏季青藏高原及周边热力特征与东亚降水的区域关系[J]. 高原气象, 34(5):1204-1216. Ao T, Li Y Q, 2015. Summertime thermal over Qinghai-Xizang Plateau and surrounding areas and its relationship with precipitation in East Asia[J]. Plateau Meteor, 34(5):1204-1216. DOI:10. 7522/j. issn. 1000-0534. 2014. 00100.
白磊, 王维霞, 姚亚楠, 等, 2013. ERA-Interim和NCEP/NCAR再分析数据气温和气压值在天山山区适用性分析[J]. 沙漠与绿洲气象, 7(3):51-56. Bai L, Wang W X, Yao Y N, et al, 2013. Reliability of NCEP/NCAR and ERA-Interim reanalysis data on Tianshan Mountainous area[J]. Desert Oasis Meteor, 7(3):51-56.
白彬人, 胡泽勇, 2016. 高原热力作用对高原夏季风爆发的指示意义[J]. 高原气象, 35(2):329-336. Bai B R, Hu Z Y, 2016. Indicative significance of thermal effects over the Qinghai-Xizang Plateau to the onset of plateau summer monsoon[J]. Plateau Meteor, 35(2):329-336. DOI:10. 7522/j. issn. 1000-0534. 2015. 00016.
段安民, 刘屹岷, 吴国雄, 2003. 4-6月青藏高原热状况与盛夏东亚降水和大气环流的异常[J]. 中国科学(地球科学), 33(10):997-1004. Duan A M, Liu Y M, Wu G X, 2003. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer[J]. Science China Earth Sciences, 48(2):250-257.
高庆九, 管兆勇, 蔡佳熙, 等, 2010. 两种再分析资料中夏季地表气温与中国测站资料的差异[J]. 大气科学, 34(4):471-482. Gao Q J, Guan Z Y, Cai J X, et al, 2010. Differences in 1958-2001 summertime surface air temperatures between two reanalysis data and observations in China[J]. Chinese J Atmos Sci, 34(4):471-482.
葛静, 王黎娟, 张良瑜, 2005. 春末夏初南亚高压活动与青藏高原及周边热力强迫的关系[J]. 大气科学学报, 38(5):611-619. Ge J, Wang L J, Zhang L Y, 2005. Relationship between South Asian high activity and thermal forcing over Tibetan Plateau and surrounding regions during late spring and early summer[J]. Trans Atmos Sci, 38(5):611-619.
何冬燕, 邓学良, 赵勇, 2010. 初春青藏高原地表温度变化对长江中下游降水的影响[J]. 高原气象, 29(3):579-586. He D Y, Deng X L, Zhao Y, 2010. Effect of surface temperature variation of Tibetan Plateau in early spring on the precipitation in mid-and lower reaches of Yangtze river[J]. Plateau Meteor, 29(3):579-586.
黄芳芳, 马伟强, 李茂善, 等, 2016. 藏北高原地表温度对气候变化响应的初步分析[J]. 高原气象, 35(1):55-63. Huang F F, Ma W Q, Li M S, et al, 2016. Analysis on responses of land surface temperature on the Northern Tibetan Plateau to climate change[J]. Plateau Meteor, 35(1):55-63. DOI:10. 7552/j. issn. 1000-0534. 2015. 00075.
黄刚, 2006. NCEP/NCAR和ERA-40再分析资料以及探空观测资料分析中国北方地区年代际气候变化[J]. 气候与环境研究, 11(3):310-320. Huang G, 2005. The assessment and difference of the interdecadal variations of climate change in northern part of China with the NCEP/NCAR and ERA-40 reanalysis data[J]. Climatic Environ Res, 11(3):310-320.
况雪源, 张耀存, 2006. 东亚副热带西风急流季节变化特征及其热力影响机制探讨[J]. 气象学报, 64(5):564-575. Kuang X Y, Zhang Y C, 2006. Seasonal variations of the East Asian subtropical westerly jet and the thermal mechanism[J]. Acta Meteor Sinica, 64(5):564-575.
李崇银, 王作台, 林士哲, 等, 2004. 东亚夏季风活动与东亚高空西风急流位置北跳关系的研究[J]. 大气科学, 28(5):641-658. Li C Y, Wang J T, Lin S Z, et al, 2004. The Relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location[J]. Chinese J Atmos Sci, 28(5):641-658.
吕美仲, 侯志明, 周毅, 2004. 动力气象学[M]. 北京:气象出版社. Lu M Z, Hou Z M, Zhou Y, 2004. Dynamic meteorology[M]. Beijing:China Meteorological Press.
祁莉, 何金海, 张祖强, 等, 2007. 纬向海陆热力差异的季节转换与东亚副热带季风环流[J]. 科学通报, 52(24):2895-2899. Qi L, He J H, Zhang Z Q, et al, 2007. Seasonal transition of the zonal land-sea thermal contrast and the East Asian subtropical summer monsoon circulation[J]. Chinese Sci Bull, 52(24):2895-2899.
秦艳慧, 吴通华, 李韧, 等, 2015. ERA-Interim 地表温度资料在青藏高原多年冻土区的适用性[J]. 高原气象, 34(3):666-675. Qin Y H, Wu T H, Li R, et al, 2015. Application of ERA product of land surface temperature in permafrost regions of Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(3):666-675. DOI:10. 7522/j. issn. 1000-0534. 2014. 00151.
任广成, 1991. 青藏高原热状况对南亚高压活动的影响[J]. 大气科学, 15(1):28-32. Ren G C, 1991. Effect of thermal regime over the Tibetan Plateau on south Asian high activities[J]. Scientia Atmos Sinica, 15(1):28-32.
申乐琳, 何金海, 陈隆勋, 等, 2009. 青藏高原热力状况对东亚夏季副热带西风急流的影响[J]. 气象与减灾研究, 2009, 32(1):25-31. Shen L L, He J H, Chen L X, et al, 2009. Thermal effect of Tibetan Plateau on East Asia subtropical westerly jet in summer[J]. Meteor Disaster Reduction Res, 32(1):25-31.
孙国武, 1984. 南亚高压季节性变化的研究[C]//青藏高原气象科学实验文集(二). 北京:科学出版社. Sun G W, 1984. Study on seasonal variation of the South Asia High[C]//Papers on the Tibetan Plateau Meteorological EXperiment (Part Ⅱ). Beijing:Science Press.
汤懋苍, 尹建华, 蔡洁萍, 1986. 冬季地温分布与春夏季降水相关的统计分析[J]. 高原气象, 5(1):40-52. Tang M C, Yin J H, Cai J P, 1986. A statistical relationship between the field of soil temperature in winter and of the precipitation in spring and flood season[J]. Plateau Meteor, 5(1):40-52.
王同美, 吴国雄, 宇婧婧, 2009. 春季青藏高原加热异常对亚洲热带环流和季风爆发的影响[J]. 热带气象学报, 25(增刊1):92-102. Wang T M, Wu G X, Yu J J, 2009. The influence of anomalous diabatic heating over Tibetan Plateau in spring on the Asian tropical circulation[J]. J Trop Meteor, 25(Suppl1):92-102.
吴国雄, 刘屹岷, 刘新, 等, 2005. 青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学, 29(1):47-56. Wu G, Liu Y M, Liu X, et al, 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer[J]. Chinese J Atmos Sci, 29(1):47-56.
徐晨, 陈海山, 黄菱芳, 2015. 冬季欧亚中高纬陆面热力异常与同期大气环流的联系[J]. 高原气象, 34(6):1584-1592. Xu C, Chen H S, Huang L F, 2015. Possible linkage between land surface thermal anomalies in mid-high latitudes of eurasian continent and atmospheric general circulation in winter[J]. Plateau Meteor, 34(6):1584-1592. DOI:10. 7522/j. issn. 1000-0534. 2014. 00062.
徐祥德, 赵天良, 施晓晖, 等, 2015. 青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J]. 气象学报, 73(1):20-35. Xu X D, Zhao T L, Shi X H, et al, 2015. A study of the role of the Tibetan Plateau's thermal forcing in modulating rain band and moisture transport in eastern China[J]. Acta Meteor Sinica, 73(1):20-35.
叶笃正, 朱抱真, 1958. 大气环流的若干基本问题[M]. 北京:科学出版社. Ye D Z, Zhu B Z, 1958. Some fundamental problems of the general circulation of the atmosphere[M]. Beijing:Science Press.
叶笃正, 高由禧, 1979. 西藏高原气象学[M], 北京:科学出版社. Ye D Z, Gao Y X, 1979. The Qinghai-Xizang Plateau meteorology[M]. Beijing:Science Press.
曾钰婵, 范广洲, 赖欣, 等, 2016. 青藏高原季风活动与大气热源/汇的关系[J]. 高原气象, 35(5):1148-1156. Zeng Y C, Fan G Z, Lai X, et al, 2016. Relationship between the Qinghai-Xizang Plateau monsoon and the atmospheric heat source/sink[J]. Plateau Meteor, 35(5):1148-1156. DOI:10. 7522/j. issn. 1000-0534. 2015. 00093.
张琼, 钱永甫, 张学洪, 2000. 南亚高压的年际和年代际变化[J]. 大气科学, 24(1):67-78. Zhang Q, Qian Y F, Zhang X H, 2000. Interannual and interdecadal variation of the South Asia High[J]. Chinese J Atmos Sci, 24(1):67-78.
张盈盈, 李忠贤, 刘伯奇, 2015. 春季青藏高原表面感热加热的年际变化特征及其对印度夏季风爆发时间的影响[J]. 大气科学, 39(6):1059-1072. Zhang Y Y, Li Z X, Liu B Q, 2015. Interannual variability of surface sensible heating over the Tibetan Plateau in boreal spring and its influence on the onset time of the Indian summer monsoon[J]. Chinese J Atmos Sci, 39(6):1059-1072.
赵平, 陈隆勋, 2001. 35年来青藏高原大气热源气候特征及其与中国降水的关系[J]. 中国科学(地球科学), 31(4):327-332. Zhao P, Chen L X, 2001. Climatic characteristics of the heat source over the Tibetan Plateau in recent 35 years and its relationship with precipitation in China[J]. Science China Earth Sciences, 31(4):327-332.
赵平, 陈军明, 肖栋, 等, 2008. 夏季亚洲-太平洋涛动与大气环流和季风降水[J]. 气象学报, 66(5):71-729. Zhao P, Chen J M, Xiao D, et al, 2008. Summer Asian-Pacific oscillation and its relation-ship with atmospheric circulation and monsoon rainfall[J]. Acta Meteor Sinica, 66(5):716-729.
赵天保, 符淙斌, 2006. 中国区域ERA-40、NCEP-2再分析资料与观测资料的初步比较与分析[J]. 气候与环境研究, 11(1):14-32. Zhao T B, Fu C B, 2006. Preliminary Comparsion and Analysis between ERA-40, NCEP-2 Reanalysis and Observations over China[J]. Climatic Environ Res, 11(1):14-32.
赵勇, 李如琦, 杨霞, 等, 2013. 5月青藏高原地区感热异常对北疆夏季降水的影响[J]. 高原气象, 2013, 32(5):1215-1223. Zhao Y, Li R Q, Yang X, et al, 2013. Impact of the anomaly of surface sensible heat in Qinghai-Xizang Plateau and its surrounding areas on summertime precipitation in Northern Xinjiang[J]. Plateau Meteor, 32(5):1215-1223. DOI:10. 7522/j. issn. 1000-0534. 2012. 00117.
郑旭程, 陈海山, 2012. 全球春、夏陆面热力状况变化特征:NCEP/NCAR与ERA40再分析资料的比较[J]. 大气科学学报, 35(1):41-50. Zheng X C, Chen H S, 2012. Characteristics of global land surface thermal conditions in spring and summer:Comparison between NCEP/NCAR and ERA40 reanalysis data[J]. Trans Atmos Sci, 35(1):41-50.
周俊前, 刘新, 李伟平, 等, 2016. 青藏高原春季地表感热异常对西北地区东部降水变化的影响[J]. 高原气象, 35(4):845-853. Zhou J Q, Liu X, Li W P, et al, 2016. Relationship between surface sensible heating over the Qinghai-Xizang Plateau and precipitation in the eastern part of Northwest China in spring[J]. Plateau Meteor, 35(4):845-853. DOI:10. 7522/j. issn. 1000-0534. 2015. 00053.
周秀骥, 赵平, 陈军明, 等, 2009. 青藏高原热力作用对北半球气候影响的研究[J]. 中国科学(地球科学), 2009, 39(11):1473-1486. Zhou X J, Zhao P, Chen J M, et al, 2009. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemisphere climate[J]. Science China Earth Sciences, 39(11):1473-1486.
朱艳峰, 张博, 陈隆勋, 2010. 夏季青藏高原与其东部平原的热力差异对中国降水的影响[J]. 科学通报, 55(6):483-489. Zhu Y F, Zhang B, Chen L X, 2010. Thermal difference between the Tibetan Plateau and the plain east of Plateau and its influence on rainfall over China in the summer[J]. Chinese Sci Bull, 55(6):483-489.
[1] 李燕, 闫加海, 张冬峰. 青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J]. 高原气象, 2018, 37(2): 317-324.
[2] 董敏, 吴统文, 左群杰, 高守亭. 气候系统模式对南亚高压气候特征的模拟比较研究[J]. 高原气象, 2018, 37(2): 455-468.
[3] 刘维成, 张强, 傅朝. 近55年来中国西北地区降水变化特征及影响因素分析[J]. 高原气象, 2017, 36(6): 1533-1545.
[4] 焦铂洋, 苏昱丞, 郭胜利, 郭栋, 施春华, 李婧媛, 苍中亚, 傅帅. 青藏高原臭氧谷的分布及其与太阳辐射的关系[J]. 高原气象, 2017, 36(5): 1201-1208.
[5] 王前, 赵勇, 陈飞, 杨青, 黄安宁. 南亚高压的多模态特征及其与新疆夏季降水的联系[J]. 高原气象, 2017, 36(5): 1209-1220.
[6] 赵玉衡, 封国林, 郑志海. 基于统计方法的典型冬季海温变率分类研究[J]. 高原气象, 2017, 36(5): 1357-1367.
[7] 庞轶舒, 马振峰, 杨淑群, 杨小波. 盛夏高原季风指数的探讨及其对四川盆地降水的影响[J]. 高原气象, 2017, 36(4): 886-899.
[8] 方楠, 阳坤, 拉珠, 陈莹莹, 王君波, 朱立平. WRF湖泊模型对青藏高原纳木错湖的适用性研究[J]. 高原气象, 2017, 36(3): 610-618.
[9] 卓嘎, 德吉卓玛, 尼玛吉. 青藏高原土壤湿度分布特征及其对长江中下游6、7月降水的影响[J]. 高原气象, 2017, 36(3): 657-666.
[10] 庞雪琪, 李栋梁, 姚慧茹. 欧亚中高纬冬季地表感热异常与中国西北东部夏季降水的可能联系[J]. 高原气象, 2017, 36(3): 675-684.
[11] 黄鑫, 布和朝鲁, 林大伟, 吕冠儒. 春季蒙古气旋活动与冬季北大西洋海温异常和欧亚大陆积雪异常的联系[J]. 高原气象, 2017, 36(3): 750-762.
[12] 李春晖, 潘蔚娟, 李霞, 刘燕. 华南春季降水及其季节内振荡强度的年代际变化特征[J]. 高原气象, 2017, 36(2): 491-500.
[13] 杨建玲, 胡海波, 穆建华, 王敏, 胡文东. 印度洋海盆模影响西北东部5月降水的数值模拟研究[J]. 高原气象, 2017, 36(2): 510-516.
[14] 周亚, 高晓清, 李振朝, 惠小英, 杨丽薇. 青藏高原深层土壤热通量的变化特征分析[J]. 高原气象, 2017, 36(2): 307-316.
[15] 周娟, 文军, 王欣, 贾东于, 陈金雷. 青藏高原季风演变及其与土壤湿度的相关分析[J]. 高原气象, 2017, 36(1): 45-56.