Please wait a minute...
高级检索
高原气象  2017, Vol. 36 Issue (6): 1546-1556    DOI: 10.7522/j.issn.1000-0534.2017.00007
论文     
高寒山区面降水量获取方法及影响因素研究进展
王磊1,2,3, 陈仁升1,2, 宋耀选1,2
1. 中国科学院西北生态环境资源研究院黑河上游生态-水文试验研究站, 甘肃 兰州 730000;
2. 中国科学院内陆河 生态水文重点实验室, 甘肃 兰州 730000;
3. 中国科学院大学, 北京 100049
Research Review on Calculation Methods and Influential Factors on Areal Precipitation of Alpine Mountains
WANG Lei1,2,3, CHEN Rensheng1,2, SONG Yaoxuan1,2
1. Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. Key Laboratory of Inland River Ecohydrology, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(2200 KB)  
摘要: 主要总结了高寒山区面降水数据的获取方法、影响因素及时空分布的研究进展,并指出了面降水量数据获取可能的解决途径。通常地面观测及空间插值、大气数值模式估算、遥感反演是面降水数据的主要获取方法,但应用于高寒山区都有一定局限性:地面观测点稀缺限制了各种空间插值方法的精度;大气数值模式,不能有效地模拟高寒山区复杂地形下的局地降水空间分布;地基遥感(多普勒雷达)受地形遮挡和自身条件的限制,空基遥感数据的精度受限于卫星搭载降水雷达的性能、卫星过境频率及空间分辨率等因素;对降水分布的估算存在很大误差。水汽源、坡向、海拔与下垫面地形是影响高山区降水量及其时空分布的主要因素。为此,在黑河上游祁连高山区,已进行的小范围加密观测、基于遥感空间格网的矩阵观测及大范围撒网式观测,仍是了解高寒山区降水量时空分布规律的基础;有待提高精度和时空分辨率的卫星数据,以及有效的地面-卫星遥感数据同化方法的研究,也将成为获取高寒山区精确的面降水量的有效途径;大气数值模式的降尺度研究也是一种途径,有待进一步研究。
关键词: 高寒山区面降水量获取方法影响因素时空分辨率    
Abstract: Areal precipitation is important for many branches of subjects, such as atmospheric sciences, ecology, hydrology and cryosphere science. The barriers of obtaining accurate areal precipitation are less precipitation data and the lack of relative research. The aim is to provide a research review on calculation methods and influential factors on areal precipitation in alpine mountains, and to indicate the likely research direction to obtain accurate precipitation data in alpine mountains. Nowadays, the main methods to obtain areal precipitation are ground observation, spatial interpolation, atmospheric numerical model and remote sensing. However, the precipitation observation stations are sparsely distributed and mainly distributed in low elevation areas because of the various conditions and severe weather conditions in alpine mountains. In addition, the sparse observation points and complex terrain conditions limit the use of spatial interpolation and atmospheric numerical model. When these two methods are used to calculate the distribution of precipitation, the results are too poor to apply to the study of hydrological processes. Ground-based radar is affected by terrain shading and defect of its structure significantly, and satellite remote sensing is limited by radar performance, spatial resolution and satellite transit. Hence, the applicability to the precipitation distribution, especially the regional precipitation in mountainous areas, is not ideal. The distribution of precipitation and amount of precipitation in alpine mountains are influenced by source of water vapor, slope, altitude, topography and different underlying surface. The terrain and the atmospheric circulation act on the precipitation, which leads to a great variability of the temporal and spatial distribution of precipitation, and also increase the difficulty of obtaining accurate areal precipitation data. Therefore, the further research on distribution of precipitation in alpine mountains should be carried out in many aspects. For those reasons, small range encryption observation, remote sensing spatial grid matrix observation and wide range net observation that had been carried out at Hulu watershed located in upstream of Heihe River. All of those are the important foundation of precipitation researches. At the same time, the research of satellite application in precipitation will improve the accuracy of satellite precipitation data and launch an efficient satellite remote sensing data assimilation research. In terms of numerical simulation, strengthen the study on refinement and downscaling atmospheric numerical model are also the ways to improve the accuracy of precipitation simulation.
Key words: Alpine mountains    areal precipitation    acquisition methods    influential factors    spatial-temporal resolution
收稿日期: 2016-10-17 出版日期: 2017-12-20
ZTFLH:  P426.6  
基金资助: 国家重点基础研究发展计划项目(2013CBA01806);国家自然科学基金项目(41671029,41690141,91225302)
通讯作者: 陈仁升.E-mail:crs2008@lzb.ac.cn     E-mail: crs2008@lzb.ac.cn
作者简介: 王磊(1991),男,山东滨州人,硕士研究生,主要从事流域降水分布研究.E-mail:sdwanglei@lzb.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王磊
陈仁升
宋耀选

引用本文:

王磊, 陈仁升, 宋耀选. 高寒山区面降水量获取方法及影响因素研究进展[J]. 高原气象, 2017, 36(6): 1546-1556.

WANG Lei, CHEN Rensheng, SONG Yaoxuan. Research Review on Calculation Methods and Influential Factors on Areal Precipitation of Alpine Mountains. PLATEAU METEOROLOGY, 2017, 36(6): 1546-1556.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00007        http://www.gyqx.ac.cn/CN/Y2017/V36/I6/1546

Anderl B, Attmannspacher W, Schultz G A, 1976. Accuracy of reservoir inflow forecasts based on radar rainfall measurements[J]. Water Res Res, 12(2):217-223.
Basist A, Bell G D, Meentemeyer V, 1994. Statistical relationships between topography and precipitation patterns[J]. J Climate, 7(9):1305-1315.
Battan L J, 1959. Radar meteorology[M]. Chicago:University of Chicago Press, 1959.
Bishop G D, Church M R, Daly C, 1998. Effects of improved precipitation estimates on automated runoff mapping:eastern united states1[J]. Journal of the American Water Resources Association, 34(1):159-166.
Borga M, 2002. Accuracy of radar rainfall estimates for streamflow simulation[J]. J Hydrol, 267(1):26-39.
Castro L M, Gironas J, Feranadez B, 2014. Spatial estimation of daily precipitation in regions with complex relief and scarce data using terrain orientation[J]. J Hydrol, 517(19):481-492.
Chen R S, Song Y X, Kang E S, et al, 2014. A cryosphere-hydrology observation system in a small alpine watershed in the Qilian Mountains of China and its meteorological gradient[J]. Arctic, Antarctic, and Alpine Research, 46(2):505-523.
Colle B A, Mass C F, Westrick K J, 1998. Mesoscale modeling of precipitation in complex orography along the west coast of North America[J]. 8th Conference on Mountain Meteorology, American Meteorological Society, 5-8.
Delbari M, Afrasiab P, Jahani S, 2013. Spatial interpolation of monthly and annual rainfall in northeast of Iran[J]. Meteor Atmos Phys, 122(1/2):103-113.
Dinku T, Connor S J, Ceccato P, 2010. Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America[M]//Satellite Rainfall Applications for Surface Hydrology. Dordrecht:Springer Netherlands, 193-204.
Diodato N, Ceccarelli M, 2005. Interpolation processes using multivariate geostatistics for mapping of climatological precipitation mean in the Sannio Mountains (southern Italy)[J]. Earth Surface Processes and Landforms, 30(3):259-268.
Dorninger M, Schneider S, Steinacter R, 2008. On the interpolation of precipitation data over complex terrain[J]. Meteor Atmos Phys, 101(3/4):175-189.
Dudhia J, 1993. A nonhydrostatic version of the Penn State-NCAR mesoscale model:Validation tests and simulation of an Atlantic cyclone and cold front[J]. Mon Wea Rev, 121(5):1493-1513.
Frey-Buness A, Heinmann D, Sausen R, 1995. A statistical-dynamical downscaling procedure for global climate simulations[J]. Theor Appl Climatol, 50(3):117-131.
Griggs D J, Noguer M, 2002. Climate change 2001:the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change[J]. Weather, 57(8):267-269.
Goovaerts P, 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall[J]. Journal Hydrol, 228(1):113-129.
Huang W, Feng S, Chen J, et al, 2015. Physical mechanisms of summer precipitation variations in the Tarim Basin in Northwestern China[J]. J Climate, 28(9):3579-3591.
Junquas C, Li L, Vera C S, et al, 2016. Influence of South America orography on summertime precipitation in Southeastern South America[J]. Climate Dyn, 46(11/12):3941-3963.
Kuchment L S, Gelfan A N, Demidov V N, 2000. A distributed model of runoff generation in the permafrost regions[J]. J Hydrol, 240(1):1-22.
Li B, Chen Y, Chen Z, et al, 2016. Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010?[J]. Atmos Res, 167(2016):275-284.
Marquinez J, Lastra J, Gapcia P, 2003. Estimation models for precipitation in mountainous regions:the use of GIS and multivariate analysis[J]. J Hydrol, 270(1):1-11.
Martinez-Cob A, 1996. Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain[J]. J Hydrol, 174(1):19-35.
Murphy J, 1999. An evaluation of statistical and dynamical techniques for downscaling local climate[J]. J Climate, 12(8):2256-2284.
Nan Z, Li S, Cheng G, 2005. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science China Earth Sciences, 48(6):797-804.
Prowse T D, Wrona F J, Reistt J D, et al, 2006. Climate change effects on hydroecology of Arctic freshwater ecosystems[J]. AMBIO:A Journal of the Human Environment, 35(7):347-358.
Vicente S S M, Sanchez S, Cuadrat J M, 2003. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain):Application to annual precipitation and temperature[J]. Climate Res, 24(2):161-180.
Wilson C B, Valdes J B, Rodiguez-Iturbe I, 1979. On the influence of the spatial distribution of rainfall on storm runoff[J]. Water Resour Res, 15(2):321-328.
Winchell M, Gupta H V, Sorooshian S, 1998. On the simulation of infiltration-and saturation-excess runoff using radar-based rainfall estimates:Effects of algorithm uncertainty and pixel aggregation[J]. Water Resour Res, 34(10):2655-2670.
Woo M K, Kane D L, Carey S K, et al, 2008. Progress in permafrost hydrology in the new millennium[J]. Permafrost and Periglacial Processes, 19(2):237-254.
Schell G S, Madramootoo C A, Austin G L, et al, 1992. Use of radar measured rainfall for hydrologic modeling[J]. Canadian Agricultural Engineering, 34(1):41-48.
Schipper J W, Frueh B, Pfeiffer A, et al, 2011. Wind direction-dependent statistical downscaling of precipitation applied to the Upper Danube catchment[J]. Int J Climatol, 31(4):578-591.
Sevruk B, 1997. Regional dependency of precipitation-altitude relationship in the Swiss Alps[M]//Climatic Change at High Elevation Sites. Dordrecht:Springer Netherlands, 123-137.
Sevruk B, Nvenic M, 1998. The geography and topography effects on the areal pattern of precipitation in a small prealpinebasin[J]. Water Sci Technol, 37(11):163-170.
Shen Y, Xiong A, Wang Y, et al, 2010. Performance of high-resolution satellite precipitation products over China[J]. J Geophys Res:Atmospheres, 115(D2):1-17.
Souounis P J, Hutchinson T A, Marshall S F, et al, 2004. 24. 6 A Comparison of MM5, WRF, RUC, and ETA performance for great plains heavy precipitation events during the spring of 2003[OL]. In Preprints 20th Conference on Weather Analysis and Forecasting, Seattle, American Meteorological Society.[2016-10-15]. https://ams.confex.com/ams/pdfpapers/73741.pdf.
Zhang X, Srinivasan R, 2009. GIS-based spatial precipitation estimation:A comparison of geostatistical approaches1[J]. Journal of the American Water Resources Association, 45(4):894-906.
Zhou T, Yu R, Chen H, et al, 2008. Summer precipitation frequency, intensity, and diurnal cycle over China:A comparison of satellite data with rain gauge observations[J]. J Climate, 21(16):3997-4010
Zhu J, Liang X Z, 2007. Regional climate model simulations of US precipitation and surface air temperature during 1982-2002:Interannual variation[J]. J Climate, 20(2):218-232.
Zulkafli Z, Buytaert W, Onof C, et al, 2014. A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean-Amazon river basins[J]. J Hydrometeor, 15(2):581-592.
毕宝贵, 刘月巍, 李泽椿, 2006. 地表热通量对陕南强降水的影响[J]. 地理研究, 24(5):681-691. Bi B G, Li Y W, Li Z C, 2006. The effect of surface thermal forcing on the extremely heavy rainfall in the southern Shanxi Province[J]. Geograp Res, 24(5):681-691.
陈贺, 李原园, 杨志峰, 等, 2007. 地形因素对降水分布影响的研究[J]. 水土保持研究, 14(1):119-122. Chen H, Li Y Y, Yang Z F, et al, 2007. Research on the relationship between terrain factors and precipitation[J]. Research of Soil and Water Conservation, 14(1):119-122.
谌芸, 田浩, 宗翔, 等, 2007. 基于网格计算的 MM5 系统在青藏高原地区的应用[J]. 气象与环境科学, 30(1):4-9. Shen Y, Tian H, Zong X, et al, 2007. MM5 application system in Qinghai-Tibet Plateau based on grid computing[J]. Meteor Environ Sci, 30(1):4-9.
成璐, 沈润平, 师春香, 等, 2014. CMORPH 和 TRMM 3B42 降水估计产品的评估检验[J]. 气象, 40(11):1372-1379. Cheng L, Shen R P, Shi C X, et al, 2014. Evaluation and verification of CMORPH and TRMM 3B42 precipitation estimation product[J]. Meteor Mon, 40(11):1372-1379.
丁永建, 1995. 近 40a 来全球冰川波动对气候变化的反应[J]. 中国科学(化学), 25(10):1093-1098. Ding Y J, 1995. Response of global glaciers fluctuation to climatic change in recent 40 years[J]. Science China Chemistry, 25(10):1093-1098.
段旭, 王曼, 张杰, 等, 2010. 低纬高原地区多元信息综合变分分析试验[J]. 高原气象, 29(3):712-718. Duan X, Wang M, Zhang J, et al, 2010. Variation assimilation experiment of the multi-information analysis over low latitude plateau[J]. Plateau Meteor, 29(3):712-718.
封志明, 杨艳昭, 丁晓强, 等, 2004. 气象要素空间插值方法优化[J]. 地理研究, 23(3):357-364. Feng Z M, Yang Y Z, Ding X Q, et al, 2004. Optimization of the spatial interpolation methods for climate resources[J]. Geograp Res, 23(3):357-364.
傅抱璞, 1992. 地形和海拔高度对降水的影响[J]. 地理学报, 47(4):302-314. Fu B P, 1992. The effects of topography and elevation on precipitation[J]. Acta Geograp Sinica, 47(4):302-314.
高艳红, 程国栋, 2008. 黑河流域陆地-大气相互作用研究的几点思考[J]. 地球科学进展, 23(7):779-784. Gao Y H, Cheng G D, 2008. Several points on mass and energy interaction between land surface and atmosphere in the Heihe Rever Basin[J]. Adv Earth Sci, 23(7):779-784.
何由, 阳坤, 姚檀栋, 等, 2012. 基于 WRF 模式对青藏高原一次强降水的模拟[J]. 高原气象, 31(5):1183-1191. He You, Yang Kun, Yao Tandong, et al, 2012. Numerical simulation of heavy precipitation in Qinghai-Xizang Plateau based on WRF Model[J] Plateau Meteor, 31(5):1183-1191.
黄菁, 张强, 2012. 中尺度大气数值模拟及其进展[J]. 干旱区研究, 29(2):273-283. Huang J, Zhang Q, 2012. Mesoscale atmospheric numerical simulation and its progress[J]. Arid Zone Res, 29(2):273-283.
金栋梁, 刘予伟, 2005. 降水量评价综述[J]. 水资源研究, 25(3):11-17. Jin D L, Liu Y W, 2005. An overview on the assessment of precipitation[J]. J Water Resour Res, 25(3):11-17.
阚宝云, 苏凤阁, 童凯, 等, 2013. 四套降水资料在喀喇昆仑山叶尔羌河上游流域的适用性分析[J]. 冰川冻土, 35(3):710-722. Kan B Y, Su F G, Tong K, et al, 2013. Analysis of the applicability of four precipitation datasets in the upper reaches of the Yarkant River, the Karakorum[J]. Journal of Glaciology and Geocryology, 35(3):710-722.
李新, 刘绍民, 马明国, 等, 2012. 黑河流域生态-水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 27(5):481-498. Li X, Liu S M, Ma M G, et al, 2012. Hiwater:An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Adv Earth Sci, 27(5):481-498.
李岩瑛, 张强, 许霞, 等, 2009. 祁连山区暴雨的气候特征及形成机制[C]//杭州:第26届中国气象学会年会灾害天气事件的预警, 预报及防灾减灾分会场论文集, 485-499. Li Y Y, Zhang Q, Xu X, et al, 2009. Forming mechanism and climate characteristics of rainstorm over the Qilian Mountain[C]//Hangzhou:The twenty-sixth session of the annual meeting of the society of Chinese meteorological disaster weather events early warning, Forecasting and disaster prevention and mitigation branch collection, 485-499.
李忠勤, 2011. 天山乌鲁木齐河源1号冰川近期研究与应用[M]. 科学出版社, 34-57. Li Z Q, 2011. Progress and Application of Research on Glacier No. 1 at Headwaters of Urumqi River[M]. The Science Publishing Company, 34-57.
李子良, 2006. 地形降水试验和背风回流降水机制[J]. 气象, 32(5):10-15. Li Z L, 2006. Simulations of precipitation induced by reversal flow in the lee of mountain[J]. Meteor Mon, 32(5):10-15.
廖菲, 洪延超, 郑国光, 2007. 地形对降水的影响研究概述[J]. 气象科技, 35(3):309-316. Liao F, Hong Y C, Zheng G G, 2007. Review of orographic influences on surface precipitation[J]. Meteor Sci Technol, 35(3):309-316.
廖菲, 胡娅敏, 洪延超, 2009. 地形动力作用对华北暴雨和云系影响的数值研究[J]. 高原气象, 28(1):115-126. Liao F, Hu Y M, Hong Y C, 2009. Numerical study for the influences of orographic dynamic on cloud and precipitation in North China[J]. Plateau Meteor, 28(1):115-126.
林厚博, 游庆龙, 焦洋, 2016. 青藏高原及附近水汽输送对其夏季降水影响的分析[J]. 高原气象, 35(2):309-317. Lin H B, You Q L, Jiao Y, et al, 2016. Water vapor transportation and its influences on precipitation in summer over Qinghai-Xizang Plateau and its surroundings[J]. Plateau Meteor, 35(2):309-317. DOI:10. 7522/j. issn. 1000-0534. 2014. 00146.
林之光, 1995. 地形降水气候学[M]. 北京:科学出版社, 25-34. Lin Z G, 1995. Orographic precipitation climatology[M]. Beijing:Science Press, 25-34.
刘辉志, 梁彬, 朱凤荣, 等, 2003. 山谷中热力环流的水槽实验研究[J]. 自然科学进展, 13(9):1005-1008. Liu H Z, Liang B, Zhu F R, et al, 2003. Experimental study on the thermal circulation of the valley[J]. Progress in Natural Science, 13(9):1005-1008.
刘俊峰, 陈仁升, 韩春坛, 等, 2010. 多卫星遥感降水数据精度评价[J]. 水科学进展, 21(3):343-348. Liu J F, Chen R S, Han C T, et al, 2010. Evaluating TRMM multi-satellite precipitation analysis using gauge precipitation and MODIS snow-cover products[J]. Adv Water Sci, 21(3):343-348.
刘俊峰, 陈仁升, 卿文武, 等, 2011. 基于TRMM降水数据的山区降水垂直分布特征[J]. 水科学进展, 22(4):447-454. Liu J F, Chen R S, Qing W W, et al, 2011. Study on the vertical distribution of precipitation in mountainous regions using TRMM data[J]. Adv Water Sci, 22(4):447-454.
刘元波, 傅巧妮, 宋平, 等, 2011. 卫星遥感反演降水研究综述[J]. 地球科学进展, 26(11):1162-1172. Liu Y B, Fu Q N, Song P, et al, 2011. Satellite retrieval of precipitation:An overview[J]. Adv Earth Sci, 26(11):1162-1172.
吕洋, 杨胜天, 蔡明勇, 等, 2013. TRMM 卫星降水数据在雅鲁藏布江流域的适用性分析[J]. 自然资源学报, 28(8):1414-1425. Lv Y, Yang S T, Cai M Y, et al, 2013. The applicability analysis of TRMM precipitation data in the Yarlung Zangbo River Basin[J]. Journal of Natural Resources, 28(8):1414-1425.
马学谦, 董万胜, 楚荣忠, 等, 2008. X波段双偏振多普勒天气雷达降雨估算试验[J]. 高原气象, 27(2):382-391. Ma X Q, Dong W S, Chu R Z, et al, 2008. Experiment of rainfall estimation using X-Band Dual-Polarized Doppler weather radar[J]. Plateau Meteor, 27(2):382-391.
穆振侠, 姜卉芳, 刘丰, 等, 2008. 天山西部山区降雨量空间分布的研究[J]. 新疆农业大学学报, 30(1):75-77. Mu Z X, Jiang H F, Liu F, et al, 2008. Research on spatial distribution of rainfall in the west of Tianshan Mountain[J]. Journal of Xinjiang Agricultural University, 30(1):75-77.
穆振侠, 姜卉芳, 党建新, 等, 2010. 不同地形对山区降水垂直分布规律的影响[J]. 新疆农业大学学报, 33(01):66-71. Mu Z X, Jiang H F, Dang J X, et al, 2010. Effects of different topographies on vertical distribution law of precipitation in mountain region[J]. Journal of Xinjiang Agricultural University, 33(01):66-71.
宁理科, 2013. 地形地貌对天山山区降水的影响研究[D]. 石河子:石河子大学. Ning L K, 2013. Study on the influence of topography and geomorphology on precipitation over Tianshan Mountains, Central Asia[D]. Shihezi:Shihezi University.
潘小多, 李新, 钞振华, 2010. 区域尺度近地表气候要素驱动数据研制的研究综述[J]. 地球科学进展, 25(12):1314-1324. Pan, X D, Li X, Chao Z H, 2010. Review of research of forcing data for regional scale hydrological Model[J]. Adv Earth Sci, 25(12):1314-1324.
钱正安, 吴统文, 宋敏红, 等, 2001. 干旱灾害和我国西北干旱气候的研究进展及问题[J]. 地球科学进展, 16(1):28-38. Qian Z A, Wu T W, Song M h, et al, 2001. Arid disaster and advances in arid climate researches over northwest China[J]. Adv Earth Sci, 16(1):28-38.
邱冰, 姜加虎, 孙占东, 2010. 基于MODIS数据的降水估算在博斯腾湖流域的应用[J]. 干旱区研究, 27(5):675-679. Qiu B, Jiang J H, Sun Z D, 2010. Application of retrieval of precipitation in the Bosten Lake Basin based on MODIS Data[J]. Arid Zone Res, 27(5):675-679.
任丽娜, 翟宇梅, 王力维, 2011. 多模式集合在统计降尺度应用上的研究进展[J]. 科学技术与工程, 11(29):7185-7194. Ren L N, Zhai Y M, Wang L W, 2011. Review of application of multi-ensemble in statiscal downscaling[J]. Science Technology and Engineering, 11(29):7185-7194.
邵春, 沈永平, 张姣, 2008. 气候变化对寒区水循环的影响研究进展[J]. 冰川冻土, 30(1):72-80. Shao C, Shen Y P, Zhang J, 2008. Rencenty progress in climate change impact on water cycles of cold regions[J]. Journal of Glaciology and Geocryology, 30(1):72-80.
沈艳, 冯明农, 张洪政, 等, 2010. 我国逐日降水量格点化方法[J]. 应用气象学报, 21(3):279-286. Shen Y, Feng M N, Zhang G Z, et al, 2010. Interpolation methods of China precipitation data[J]. J Appl Meteor Sci, 21(3):279-286.
沈艳, 潘旸, 宇婧婧, 等, 2013. 中国区域小时降水量融合产品的质量评估[J]. 大气科学学报, 36(1):37-46. Shen Y, Pan Y, Yu J J, et al, 2013. Quality assessment of hourly merged precipitation product over China[J]. Trans Atmos Sci, 36(1):37-46.
舒守娟, 喻自凤, 王元, 等, 2005. 西藏地区复杂地形下的降水空间分布估算模型[J]. 地球物理学报, 48(3):535-542. Shu S J, Yu Z F, Wang Y, et al, 2005. A statistic model for the spatial distribution of precipitation estimation over the Tibetan complex terrain[J]. Chinese J Geophys, 48(3):535-542.
孙安健, 1989. 美国山地降水量垂直分布的研究[J]. 地理研究, 8(1):32-39. Sun A J, 1989. Research on vertical distribution of mountain precipitation in the United States[J]. Geographical Research, 8(1):32-39.
孙继松, 2005. 气流的垂直分布对地形雨落区的影响[J]. 高原气象, 24(1):62-69. Sun J S, 2005. The effects of vertical distribution of the lower level flow on precipitation location[J]. Plateau Meteor, 24(1):62-69.
孙佳, 江灏, 王可丽, 等, 2011. 黑河流域气候平均降水的精细化分布及总量计算[J]. 冰川冻土, 33(2):318-324. Sun J, Jiang H, Wang K L, et al, 2011. The fine spatial distribution of mean precipitation and the estimation of total precipitation in HeiHe River Basin[J]. Journal of Glaciology and Geocryology, 33(2):318-324.
孙鹏森, 刘世荣, 李崇巍, 2004. 基于地形和主风向效应模拟山区降水空间分布[J]. 生态学报, 24(9):1910-1915. Sun P S, Liu S R, Li C W, 2004. Estimation of precipitation using altitude and prevailing wind direction effect index in mountainous region[J]. Acta Ecologica Sinica, 24(9):1910-1915.
汤懋苍, 1985. 祁连山区降水的地理分布特征[J]. 地理学报, 40(4):323-332. Tang M C, 1985. The distribution of precipitation in Mountain Qilian (Nanshan)[J]. Acta Geograp Sinica, 40(4):323-332.
王会军, 2010. 东亚区域能量和水分循环对我国极端气候影响研究的一些初步进展[J]. 地球科学进展, 25(6):563-570. Wang H J, 2010. Preliminary Results of the 973 Project on the Energy and Water Cycle and Their Role in Extreme Climate of China[J]. Adv Earth Sci, 25(6):563-570.
王忠彦, 马耀明, 刘景时, 等, 2013. 珠穆朗玛峰北坡水文及其相关气象要素的特征分析[J]. 高原气象, 32(1):31-37. Wang Z Y, Ma Y M, Liu J S, et al, 2013. Characyeristic Analyses on Hydrological and Related Meteorogical Factors on the North Slope of Mount Qomolangma[J]. Plateau Meteor, 32(1):31-37. DOI:10. 7522/j. issn. 1000-0534. 2012. 00004.
翁笃鸣, 韩爱梅, 1998. 我国卫星总云量与地面总云量分布的对比分析[J]. 应用气象学报, 9(1):33-37. Weng D M, Han A M, 1998. Comparison between total cloudiness from satellite clod pictures and ground observations over China[J]. J Appl Meteor Sci, 9(1):33-37.
徐宗学, 李占玲, 史晓崑, 2007. 石羊河流域主要气象要素及径流变化趋势分析[J]. 资源科学, 29(5):121-128. Xu Z X, Li Z L Shi X K, 2007. Long-term of major climatic variables and runoff in the Shiyang River Basin[J]. Resour Sci, 29(5):121-128.
许继军, 杨大文, 蔡治国, 2007. 分布式水文模型结合雷达测雨用于三峡区间的洪水预报[J]. 长江科学院院报, 24(6):42-48. Xu J J, Yang D W, Cai Z G, 2007. Distributed hydrological model combining with radar rainfall data for regional flood forecast of Three Gorges[J]. Journal of Yangtze River Scientific Research Institute, 24(6):42-48.
杨银, 朱克云, 张杰, 等, 2015. 复杂地形下多普勒雷达资料同化的研究[J]. 高原气象, 34(5):1495-1501. Yang Y, Zhu K Y, Zhang J, et al, 2015. Study on Dopper Radar data assimilation over complex terrain[J]. Plateau Meteor, 34(5):1495-1501. DOI:10. 7522/j. issn. 1000-0534. 2014. 00059.
宇婧婧, 沈艳, 潘旸, 等, 2015. 中国区域逐日融合降水数据集与国际降水产品的对比评估[J]. 气象学报, 73(2):394-410. Yu J J, Shen Y, Pan Y, et al, 2015. Comparative assessment between the daily precipitation dataset over China and the world's popular counterparts[J]. Acta Meteor Sinica, 73(2):394-410.
张东启, 周尚哲, 2000. 天山乌鲁木齐河源1号冰川对降水影响的定量分析[J]. 冰川冻土, 22(3):243-249. Zhang D Q, Zhou S Z, 2000. Quantiative analysis the glacial effect on precipitation of Glacier NO. 1 at the Headwaters of the Urumqi River, Tianshan Mountains[J]. Journal of Glaeiology and Geogeryology, 22(3):243-249.
张利平, 胡江林, 邓中华, 等, 2003. 人工神经网络在卫星遥测定量降雨估算中的应用[J]. 系统工程理论与实践(1):139-142. Zhang L P, Hu J L, Deng Z H, et al, 2003. Application of Artificial Neural Network (ANN) in quantitative precipitation estimating from GMS satellite remote-sensing[J]. System Engineering Theory and Practice (1):139-142.
赵传成, 丁永建, 叶柏生, 等, 2011a. 天山山区降水量的空间分布及其估算方法[J]. 水科学进展, 22(3):315-322. Zhao C C, Ding Y J, Ye B S, et al, 2011a. Spatial distribution of precipitation in Tianshan Mountains and estimation[J]. Adv Water Sci, 22(3):315-322.
赵传成, 王雁, 丁永建, 等, 2011b. 西北地区近50年气温及降水的时空变化[J]. 高原气象, 30(2):385-390. Zhao C C, Wang Y, Ding Y J, et al, 2011b. Spatial-temporal variations of temperature and precipitation in Northern China in recent 50 years[J]. Plateau Meteor, 30(2):385-390.
赵刚, 吕达仁, 琚建华, 2005. 低纬高原一次中尺度对流复合体结构的数值模拟分析[J]. 气候与环境研究, 10(1):56-62. Zhao G, Lü D R, Ju J H, 2005. Analyzing the structure characteristics of a mesoscale convective complex by using mesoscale model simulation over low latitude plateau[J]. Climate Environ Res, 10(1):56-62.
赵果, 王致君, 贾伟, 等, 2016. 双线偏振天气雷达有效探测范围研究[J]. 高原气象, 35(1):244-250. Zhao G, Wang Z J, Jia W, et al, 2016. Study of the effective detection range of the Dull-Polarized Radar[J]. Plateau Meteor, 35(1):244-250. DOI:10. 7522/j. issn. 1000-0534. 2014. 00145.
[1] 除多, 边巴次仁, 扎珠, 德吉央宗. SR-50A超声雪深仪在西藏高原的适用性研究[J]. 高原气象, 2018, 37(2): 382-393.
[2] 李培都, 司建华, 冯起, 赵春彦, 王春林. 1958—2015年敦煌及周边地区极端降水事件的时空变化特征[J]. 高原气象, 2018, 37(2): 535-544.
[3] 崔园园, 覃军, 敬文琪, 谭桂容. GLDAS和CLDAS融合土壤水分产品在青藏高原地区的适用性评估[J]. 高原气象, 2018, 37(1): 123-136.
[4] 钱正安, 宋敏红, 吴统文, 蔡英. 世界干旱气候研究动态及进展综述(Ⅰ):若干主要干旱区国家的研究动态及联合国的贡献[J]. 高原气象, 2017, 36(6): 1433-1456.
[5] 钱正安, 宋敏红, 吴统文, 蔡英. 世界干旱气候研究动态及进展综述(Ⅱ):主要研究进展[J]. 高原气象, 2017, 36(6): 1457-1476.
[6] 韩熠哲, 马伟强, 王炳赟, 马耀明, 田荣湘. 青藏高原近30年降水变化特征分析[J]. 高原气象, 2017, 36(6): 1477-1486.
[7] 贺芳芳, 杨涵洧, 穆海振, 徐卫忠, 徐家良. 上海地区短历时强降水致灾阈值探索[J]. 高原气象, 2017, 36(6): 1567-1575.
[8] 曹瑜, 游庆龙, 马茜蓉, 孟宪红. 青藏高原夏季极端降水概率分布特征[J]. 高原气象, 2017, 36(5): 1176-1187.
[9] 孟庆兰, 赵赫, 高军凯, 卢筱茜, 刘良旭, 常学礼. 科尔沁地区年降水波动与空间分异特征[J]. 高原气象, 2017, 36(5): 1234-1244.
[10] 李蒙, 秦天玲, 刘少华, 卢亚静. 怒江上游TRMM 3B42V7降水产品资料时空验证及降水特征分析[J]. 高原气象, 2017, 36(4): 950-959.
[11] 马梁臣, 孙力, 王宁. 东北地区典型暴雨个例的水汽输送特征分析[J]. 高原气象, 2017, 36(4): 960-970.
[12] 胡顺起, 曹张驰, 陈滔. 山东省南部一次极端特大暴雪过程诊断分析[J]. 高原气象, 2017, 36(4): 984-992.
[13] 张长灿, 李栋梁, 王慧, 戴逸飞. 青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J]. 高原气象, 2017, 36(1): 13-23.
[14] 周扬, 徐维新, 白爱娟, 张娟, 刘晓敬, 欧阳建芳. 青藏高原沱沱河地区动态融雪过程及其与气温关系分析[J]. 高原气象, 2017, 36(1): 24-32.
[15] 杨星, 王永前, 刘志红. 四川省2013年夏季卫星降雨数据的对比研究[J]. 高原气象, 2016, 35(4): 1039-1049.