Please wait a minute...
高级检索
高原气象  2017, Vol. 36 Issue (6): 1576-1586    DOI: 10.7522/j.issn.1000-0534.2017.00003
论文     
2009年冬季北半球平流层爆发性增温的个例分析
李亚飞1,2,3, 胡景高1, 任荣彩2
1. 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;
2. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029;
3. 中国科学院大学, 北京 100049
A Case Study of the Northern Hemisphere Stratospheric Sudden Warming in the Winter of 2009
LI Yafei1,2,3, HU Jinggao1, REN Rongcai2
1. Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG), institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(11768 KB)  
摘要: 利用1979-2015年的NCEP/NCAR逐日再分析资料,分析了2009年冬季北半球平流层强爆发性增温事件(Stratospheric Sudden Worming,SSW)爆发期间的环流演变、动力特征以及增温事件爆发前对流层的前期信号。结果表明,平流层极夜急流于1月中旬开始快速减弱,同时,平流层极区温度快速上升,10 hPa极夜急流核心纬度带(60°N-70°N)纬向平均纬向风于1月24日转变为东风,标志着此次强SSW的爆发。对行星波活动异常的诊断表明,从增温事件爆发前10天开始,中高纬度10 hPa平流层2波分量快速增强,同时1波分量出现减少;Eliassen-Palm(EP)通量2波分量在SSW爆发前5天达到最强,表明此次SSW是典型的2波主导的极涡分裂型增温事件。此次强事件引起2009年冬季平均2波EP通量异常,此异常几乎是37年来最强的。对对流层500 hPa环流的分析表明,增温事件爆发前,位于东北太平洋-北美大陆西部的正位势高度异常与气候态定常波的阿拉斯加高压脊呈同位相叠加,从而有效加强了对流层行星波2波向平流层中高纬地区的传播,成为指示此次增温事件爆发的最强的对流层前期信号。
关键词: 平流层爆发性增温环流演变行星波活动前期信号    
Abstract: Based on 1979-2015 NECP/NCAR daily reanalysis data, this paper analyzed the evolution of circulation and the dynamical characteristics during the major Stratospheric Sudden Warming (SSW) in the winter of 2009, and revealed the precursory signal in troposphere before the occurrence of this SSW. The results showed that the stratospheric polar night jet quickly weakened in mid-January, meanwhile the polar stratospheric temperature rapidly increased. On 24 January, the 10 hPa zonal mean zonal wind averaged over 60°N-70°N reversed from westerly to easterly wind, indicating the onset of this major SSW. The easterly wind lasted until the end of February. By diagnosing planetary wave anomalies, it is found that the extratropical planetary wavenumber 2 component of geopotential height anomalies on 10 hPa rapidly increased from 10 days before the SSW onset. But the planetary wavenumber 1 component reduced in the corresponding period. The magnitude of the increase of planetary wavenumber 2 overwhelms the decrease of the planetary wavenumber 1. The vertical component of Eliassen-Palm (EP) flux anomalies by planetary wavenumber 2 reached the maximum value 5 days before the SSW onset. All these indicate that this SSW is a typical vortex splitting event driven by planetary wavenumber 2. This major SSW caused the strongest planetary wavenumber 2 EP flux anomalies in the winter of 2009 during the period 1979-2015. Further analyses on geopotential height anomalies on 500 hPa showed that the positive anomalies that located in the northeastern Pacific and western North America were highly in phase with the Alaska ridge of the climatological stationary waves before SSW onset. This distribution strongly enhanced the propagation of planetary wavenumber 2 from extratropical troposphere to stratosphere and thus acted as the strongest tropospheric precursory signal for the occurrence of this SSW. It is noted that although there are some other anomalous height centers that interfere with climatological stationary waves, they do not have significantly positive impacts on the SSW occurrence. For example, the negative height center that locates in the north Atlantic and eastern North America is in phase with the climatological trough over eastern North America and out of phase with the climatological ridge over Western Europe. It enhances the planetary wavenumber 2 but weakens planetary wavenumber 1 simultaneously. The net effect of this anomalous center on the stratospheric planetary wave activities is less obvious than that of the positive anomalies that locate in the northeastern Pacific and western North America.
Key words: Stratospheric Sudden Warming    circulation evolution    planetary wave activity    precursory signal
收稿日期: 2016-06-01 出版日期: 2017-12-20
ZTFLH:  P421.32  
基金资助: 国家自然科学基金项目(41505034);南京信息工程大学人才启动经费(2014R010)
通讯作者: 胡景高.E-mail:jinggaohu@nuist.edu.cn     E-mail: jinggaohu@nuist.edu.cn
作者简介: 李亚飞(1992),男,河南周口人,硕士研究生,主要从事平流层-对流层相互作用研究.E-mail:liyafei@lasg.iap.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李亚飞
胡景高
任荣彩

引用本文:

李亚飞, 胡景高, 任荣彩. 2009年冬季北半球平流层爆发性增温的个例分析[J]. 高原气象, 2017, 36(6): 1576-1586.

LI Yafei, HU Jinggao, REN Rongcai. A Case Study of the Northern Hemisphere Stratospheric Sudden Warming in the Winter of 2009. PLATEAU METEOROLOGY, 2017, 36(6): 1576-1586.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00003        http://www.gyqx.ac.cn/CN/Y2017/V36/I6/1576

Barriopedro D, Calvo N, 2014. On the relationship between ENSO, stratospheric sudden warmings, and blocking[J]. J Climate, 27(12):4704-4720.
Charlton A J, Polvani L M, 2007. A new look at stratospheric sudden warmings. Part I:Climatology and modeling benchmarks[J]. J Climate, 20(3):449-469.
Chen W, Huang R H, 2002. The propagation and transport effect of planetary waves in the Northern Hemisphere winter[J]. Adv Atmos Sci, 19(6):1113-1126.
Deng S M, Chen Y J, Luo T, et al, 2008. The possible influence of stratospheric sudden warming on East Asian weather[J]. Adv Atmos Sci, 25:841-846.
Garfinkel C I, Hartmann D L, Sassi F, 2010. Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices[J]. J Climate, 23(12):3282-3299.
Hu J G, Ren R C, Xu H M, 2014. Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming[J]. J Atmos Sci, 71(7):2319-2334.
Lida C, Hirooka T, Eguchi N, 2014. Circulation changes in the stratosphere and mesosphere during the stratospheric sudden warming event in January 2009[J]. J Geophys Res, 119(12):7104-7115.
Kanamitsu M, Ebisuzaki W, Woollen J, et al, 2002. NCEP-DOE AMIP-Ⅱ reanalysis(r-2)[J]. Bull Amer Meteor Soc, 83(11):1631-1643.
Limpasuvan V, Thompson D W J, Hartmann D L, 2004. The life cycle of the Northern Hemisphere sudden stratospheric warmings[J]. J Climate, 17(13):2584-2596.
Manney G L, Krüger K, Sabutis J L, et al, 2005. The remarkable 2003-2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s[J]. J Geophys Res, 110(D4):583-595.
Matsuno T, 1971. A dynamical model of the stratospheric sudden warming[J]. J Atmos Sci, 28(8):1479-1494.
Scherhag R, 1952. Die explosionsartigen Stratosphärenerwärmungen des Spätwinters 1951/52[J]. Ber Dtsch Wetterdienst, 6(38):51-63.
陈文, 黄荣辉, 2005. 北半球冬季准定常行星波的三维传播及其年际变化[J]. 大气科学, 29(1):137-146. Chen W, Huang R H, 2005. The three-dimensional propagation of quasi-stationary planetary waves in the northern hemisphere winter and its interannual variations[J]. Chinese J Atmos Sci, 29(1):137-146.
陈文, 魏科, 2009. 大气准定常行星波异常传播及其在平流层影响东亚冬季气候中的作用[J]. 地球科学进展, 24(3):272-285. Chen W, Wei K, 2009. Anomalous propagation of the quasi-stationary planetary waves in the atmosphere and its roles in the impact of the stratosphere on the east Asian winter climate[J]. Adv Earth Sci, 24(3):272-285.
邓淑梅, 陈月娟, 陈权亮, 等, 2006. 平流层爆发性增温期间行星波的活动[J]. 大气科学, 30(6):1236-1248. Deng S M, Chen Y J, Chen Q L, et al, 2006. Planetary wave activity during stratospheric sudden warming[J]. Chinese J Atmos Sci, 30(6):1236-1248.
邓淑梅, 陈月娟, 易明建, 2015. 2007/2008和2008/2009冬季平流层强、弱极涡事件对应的行星波活动的对比分析[J]. 大气科学, 39(2):433-444. Deng S M, Chen Y J, Yi M J, 2015. A comparative analysis of planetary wave activities for the 2007/2008 strong polar vortex and the 2008/2009 weak polar vortex[J]. Chinese J Atmos Sci, 39(2):433-444.
胡景高, 任荣彩, 徐海明, 等, 2015. 冬季强、弱平流层增温事件的发生与春季最后增温事件爆发早晚的联系[J]. 中国科学(地球科学), 45(4):389-401. Hu J G, Ren R C, Xu H M, et al, 2015. Seasonal timing of stratospheric final warming associated with the intensity of stratospheric sudden warming in preceding winter[J]. Science of China (Earth Science), 45(4):389-401.
蓝柳茹, 李栋梁, 2016. 西伯利亚高压的年际和年代际异常特征及其对中国冬季气温的影响[J]. 高原气象, 35(3):662-674. Lan L R, Li D L, 2016. Interannual and interdecadal anomaly features of Siberian high and their impact on winter temperature of China[J]. Plateau Meteor, 35(3):662-674. DOI:10. 7522/j. issn. 1000-0534. 2016. 00022.
雷霄龙, 符养, 薛震刚, 等, 2012. 2009年1月平流层爆发性增温期间全球电离层响应的研究[J]. 空间科学学报, 32(4):513-523. Lei X L, Fu Y, Xue Z G, et al, 2012. Observations of the global ionospheric response during the January 2009 stratospheric sudden warming event[J]. Chinese J Space Sci, 32(4):513-523.
李琳, 李崇银, 谭言科, 等, 2010. 平流层爆发性增温对中国天气气候的影响及其在ENSO影响中的作用[J]. 地球物理学报, 53(7):1529-1542. Li L, Li C Y, Tan Y K, et al, 2010. Stratospheric sudden warming impacts on the weather/climate in China and its role in the influences of ENSO[J]. Chinese J Geophys, 53(7):1529-1542.
李雪, 刘晓东, 2015. 中国北方春季沙尘暴活动与高空西风急流变化的联系[J]. 高原气象, 34(5):1292-1300. Li X, Liu X D, 2015. Relation of Spring dust-storm activities in Northern China and changes of upper westerlies[J]. Plateau Meteor, 34(5):1292-1300. DOI:10. 7522/j. issn. 1000-0534. 2014. 00067.
陆春晖, 丁一汇, 2013. 平流层爆发性增温对阻塞高压的响应及其对对流层反馈的观测[J]. 科学通报, 58(8):653-663. Lu C H, Ding Y H, 2013. Observational responses of stratospheric sudden warming to blocking highs and its feedbacks on the troposphere[J]. Chinese Sci Bull, 58(8):653-663.
陆春晖, 刘毅, 陈月娟, 等, 2009. 2003-2004年冬季平流层爆发性增温动力诊断分析[J]. 大气科学, 33(4):726-736. Lu C H, Liu Y, Chen Y J, et al, 2009. A dynamical diagnosis of stratospheric sudden warming in 2003-2004 winter[J]. Chinese J Atmos Sci, 33(4):726-736.
施春华, 徐婷, 蔡娟, 等, 2015. 球面E-P通量的计算及其应用[J]. 大气科学学报, 38(2):267-272. Shi C H, Xu T, Cai J, et al, 2015. The E-P flux calculation in spherical coordinates and its application[J]. Trans Atmos Sci, 38(2):267-272.
王飞飞, 陈金松, 徐彤, 等, 2015. 2009年1月强爆发性增温期间突发E(Es)层的响应[J]. 地球物理学报, 58(3):721-728. Wang F F, Chen J S, Xu T, et al, 2015. Response of the sporadic-E layer to the stratospheric sudden warming in January 2009[J]. Chinese J Geophys, 58(3):721-728.
王强, 郑光, 张海俊, 等, 1990. 平流层突发性增温及其前后期平均环流特征[J]. 高原气象, 9(1):104-109. Wang Q, Zheng G, Zhang H J, et al, 1990. The mean circulation characteristics during the pre-warming and post-stages of the sudden stratospheric warming[J]. Plateau Meteor, 9(1):104-109.
魏麟骁, 陈权亮, 程炳岩, 等, 2014. 平流层强、弱极涡事件的演变过程及其对我国冬季天气的影响[J]. 大气科学, 38(3):551-562. Wei L X, Chen Q L, Cheng B Y, et al, 2014. Variabilities of the stratosphere polar vortex and the influence on the weather of China during the boreal winter[J]. Chinese J Atmos Sci, 38(3):551-562.
熊光明, 陈权亮, 朱克云, 等, 2012. 平流层极涡变化与我国冬季气温、降水的关系[J]. 高原气象, 31(4):1001-1006. Xiong G M, Chen Q L, Zhu K Y, et al, 2012. Relationship between stratospheric polar vortex change and temperature, precipitation in winter of China[J]. Plateau Meteor, 31(4):1001-1006.
杨光, 李崇银, 李琳, 2012. 平流层爆发性增温及其影响研究进展[J]. 气象科学, 32(6):694-708. Yang G, Li C Y, Li L, 2012. Advance in research on stratospheric sudden warming and its influences[J]. J Meteor Sci, 32(6):694-708.
杨莲梅, 刘雯, 2016. 新疆北部持续性暴雪过程成因分析[J]. 高原气象, 35(2):507-519. Yang L M, Liu W, 2016. Cause analysis of persistent heavy snow processes in the Northern Xinjiang[J]. Plateau Meteor, 35(2):507-519. DOI:10. 7522/j. issn. 1000-0534. 2014. 00161.
张恒德, 高守亭, 刘毅, 2008. 极涡研究进展[J]. 高原气象, 27(2):452-461. Zhang H D, Gao S T, Liu Y, 2008. Advances of research on polar vortex[J]. Plateau Meteor, 27(2):452-461.
张婧雯, 李栋梁, 柳艳菊, 2014. 北半球极涡新特征及其对中国冬季气温的影响[J]. 高原气象, 33(3):721-732. Zhang J W, Li D L, Liu Y J, 2014. New features of polar vortex and its impact on winter temperature of China[J]. Plateau Meteor, 33(3):721-732. DOI:10. 7522/j. issn. 1000-0534. 2013. 00044.
[1] 徐路扬, 陈权亮. 行星波活动对不同类型SSW的影响[J]. 高原气象, 2016, 35(5): 1389-1400.
[2] 郑彬, 陈月娟, 施春华. 平流层臭氧纬向分布季节变化和行星波的关系[J]. 高原气象, 2006, 25(3): 366-374.