Please wait a minute...
高原气象  2017, Vol. 36 Issue (6): 1630-1637    DOI: 10.7522/j.issn.1000-0534.2016.00115
高冠龙1, 冯起2, 张小由2, 鱼腾飞2
1. 山西大学, 山西 太原 030006;
2. 中国科学院西北生态环境资源研究院, 甘肃 兰州 730000
Review on Modeling Evapotranspiration of Land Surface Based on the Evapotranspiration Models and Micro-Meteorological Data
GAO Guanlong1, FENG Qi2, ZHANG Xiaoyou2, YU Tengfei2
1. Shanxi University, Taiyuan 030006, Shanxi, China;
2. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
 全文: PDF(481 KB)  
摘要: 蒸散发是水循环和能量平衡过程中的重要组成部分。通过归纳总结蒸散发模拟研究中最常用的模型,汇总分析了各模型的结构、参数意义、适用条件、改进与应用等方面。结果表明:Penman(P)模型适用于计算潜在蒸散发;Penman-Monteith(P-M)模型没有区分土壤蒸发和植被蒸腾的不同过程,不适于计算稀疏植被蒸散发。对于模型中冠层阻力rc的估算,目前最常用的方法是基于Katerji-Perrier(K-P)模型和Todorovic(T)模型计算求出;Priestley-Taylor(P-T)模型虽然结构简单,但是通过对参数α进行校准,其模拟精度往往较高;McNaughton-Black(M-B)模型是基于冷杉林这一特定植被类型提出的,且未考虑空气动力学阻力(ra)对蒸散发的影响,因而该模型的应用受到限制;Shuttleworth-Wallace(S-W)模型适用于稀疏植被覆盖条件下的蒸散发模拟,近年来学者们通过对S-W模型进行改进,以期提高模型模拟精度。然而,模型结构及所需参数数量均未得到优化;改进的双源(S-S-W)模型与S-W模型相比,从模型结构及参数数量方面都得到了改进,但是其适用性目前还未得到广泛验证;Clumping(C)模型的结构极其复杂,所需参数很多,一定程度上限制了其应用。未来蒸散发模型的发展方向应该是针对不同的环境条件、植被类型和下垫面状况,以更高精度的测定仪器为前提,在原有的模型基础上进行修正,或者通过模型之间的耦合,提出结构更加简单、参数更少的模型。
关键词: 蒸散发阻力参数模拟    
Abstract: Evapotranspiration (ET) is the key component of water cycles and energy balance. This paper summarized and analyzed the structures, meanings of parameters, application conditions, and improvement and application of the most commonly used models. Results indicated that:The P model is only suitable for calculating potential ET; The P-M model, without partitioning evaporation and transpiration, is not suitable for sparse vegetation. There are two ways for calculating rc of the P-M model, namely using the Katerji-Perrier (K-P) model and the Todorovic (T) model; The P-T model can always give the most accurate estimates by calibrating α value despite its simple structure; The M-B model was proposed on the basis of fir forests and without considering the influence of ra on ET, so its application is restricted; The S-W model is suitable for sparse vegetation, and researchers have mainly focused on improving the model accuracy under specific conditions. However, the complexity and number of parameters were also increased; The S-S-W model has a simpler structure, which reduces the number of parameters and improves the opplicability of a dual-source model. However, the applicability needs to be tested in the future; The C model was rarely used due to the complex structure and a number of parameters. Research in the future will mainly focus on proposing simpler models by calibrating and coupling the ET models, which are on the basis of accurate measurements of the parameters in different natural ecosystems and under various environmental conditions.
Key words: Evapotranspiration    resistances    modeling
收稿日期: 2015-07-03 出版日期: 2017-12-20
ZTFLH:  P404  
基金资助: 中国科学院内陆河流域生态水文重点试验室(90Y290F41);国家自然科学基金项目(41401033)
作者简介: 高冠龙(1988),男,山西晋中人,讲师,主要从事生态水文研究
E-mail Alert


高冠龙, 冯起, 张小由, 鱼腾飞. 蒸散发模型结合微气象数据模拟陆面蒸散发研究进展[J]. 高原气象, 2017, 36(6): 1630-1637.

GAO Guanlong, FENG Qi, ZHANG Xiaoyou, YU Tengfei. Review on Modeling Evapotranspiration of Land Surface Based on the Evapotranspiration Models and Micro-Meteorological Data. PLATEAU METEOROLOGY, 2017, 36(6): 1630-1637.


Barton I, 1979. A parameterization of the evaporation from nonsaturated surfaces[J]. J Appl Meteor, 18(1):43-47.
Black T A, 1979. Evapotranspiration from Douglas fir stands exposed to soil water deficits[J]. Water Resour Res, 15(1):164-170.
Bosveld F C, Bouten W, 2001. Evaluation of transpiration models with observations over a Douglas-fir forest[J]. Agricultural and Forest Meteorology, 108(4):247-264.
Brenner A, Incoll L, 1997. The effect of clumping and stomatal response on evaporation from sparsely vegetated shrublands[J]. Agricultural and Forest Meteorology, 84(3):187-205.
Byun K, Liaqat U W, Choi M, 2014. Dual-model approaches for evapotranspiration analyses over homo-and heterogeneous land surface conditions[J]. Agricultural and Forest Meteorology, 197:169-187.
Conroy W J, Wu J, Elliot W, 2003. Modification of the evapotranspiration routines in the WEPP Model:Part I[C]//2003 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers.
Davies J, Allen C, 1973. Equilibrium, potential and actual evaporation from cropped surfaces in southern Ontario[J]. J Appl Meteor, 12(4):649-657.
De Bruin H, Holtslag A, 1982. A simple parameterization of the surface fluxes of sensible and latent heat during daytime compared with the Penman-Monteith concept[J]. J Appl Meteor, 21(11):1610-1621.
Ding R S, Kang S Z, Li F S, et al, 2013. Evapotranspiration measurement and estimation using modified Priestley-Taylor model in an irrigated maize field with mulching[J]. Agricultural and Forest Meteorology, 168:140-148.
Dolman A, 1993. A multiple-source land surface energy balance model for use in general circulation models[J]. Agricultural and Forest Meteorology, 65(1):21-45.
Domingo F, Villagarc?a L, Brenner A, et al, 1999. Evapotranspiration model for semi-arid shrub-lands tested against data from SE Spain[J]. Agricultural and Forest Meteorology, 95(2):67-84.
Federer C, Vörösmarty C, Fekete B, 1996. Intercomparison of methods for calculating potential evaporation in regional and global water balance models[J]. Water Resour Res, 32(7):2315-2321.
Fisher J B, DeBiase T A, Qi Y, et al, 2005. Evapotranspiration models compared on a Sierra Nevada forest ecosystem[J]. Environmental Modelling & Software, 20(6):783-796.
Flint A L, Childs S W, 1991. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut[J]. Agricultural and Forest Meteorology, 56(3):247-260.
Giles D, Black T, Spittlehouse D, 1985. Determination of growing season soil water deficits on a forested slope using water balance analysis[J]. Canadian J Forest Res, 15(1):107-114.
Guan H, Wilson J L, 2009. A hybrid dual-source model for potential evaporation and transpiration partitioning[J]. J Hydrol, 377(3):405-416.
Ha W, Kolb T E, Springer A E, et al. 2014. Evapotranspiration comparisons between eddy covariance measurements and meteorological and remote-sensing-based models in disturbed ponderosa pine forests[J]. Ecohydrology, DOI:10. 1002/eco. 1586.
Hu Z M, Li S G, Yu G R, et al, 2013. Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model[J]. J Hydrol, 501:186-192.
Hu Z M, Yu G R, Zhou Y L, et al, 2009. Partitioning of evapotranspiration and its controls in four grassland ecosystems:Application of a two-source model[J]. Agricultural and Forest Meteorology, 149(9):1410-1420.
Iritz Z, Lindroth A, Heikinheimo M, et al, 1999. Test of a modified Shuttleworth-Wallace estimate of boreal forest evaporation[J]. Agricultural and Forest Meteorology, 98:605-619.
Jury W, Tanner C, 1975. Advection modification of the Priestley and Taylor evapotranspiration formula[J]. Agronomy Journal, 67(6):840-842.
Li X, Yang P, Ren S, et al, 2010. Modeling cherry orchard evapotranspiration based on an improved dual-source model[J]. Agricultural Water Management, 98(1):12-18.
Liu Q, McVicar T R, 2012. Assessing climate change induced modification of Penman potential evaporation and runoff sensitivity in a large water-limited basin[J]. J Hydrol, 464:352-362.
McNaughton K, Black T A, 1973. Study of evapotranspiration from a Douglas Fir Forest using the energy balance approach[J]. Water Resour Res, 9(6):1579-1590.
Monteith J, 1965. Evaporation and environment:proceedings of the Symp Soc Exp Biol[C]. Symposia of the Society for Experimental Biology.
Mukammal E, Neumann H, 1977. Application of the Priestley-Taylor evaporation model to assess the influence of soil moisture on the evaporation from a large weighing lysimeter and class A pan[J]. Bound-Layer Meteor, 12(2):243-256.
Ortega-Farias S, Poblete-Echeverría C, Brisson N, 2010. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements[J]. Agricultural and Forest Meteorology, 150(2):276-286.
Pauwels V R, Samson R, 2006. Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland[J]. Agricultural Water Management, 82(1):1-24.
Penman H L, 1948. Natural evaporation from open water, bare soil and grass[C]//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences. The Royal Society, 193(1032):120-145.
Priestley C, Taylor R, 1972. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Mon Wea Rev, 100(2):81-92.
Ramírez D A, Bellot J, Domingo F, et al, 2007. Can water responses in Stipa tenacissima L. during the summer season be promoted by non-rainfall water gains in soil?[J]. Plant and Soil, 291(1-2):67-79.
Sentelhas P C, Gillespie T J, Santos E A, 2010. Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada[J]. Agricultural Water Management, 97(5):635-644.
Shuttleworth W J, Calder I R, 1979. Has the Priestley-Taylor equation any relevance to forest evaporation?[J]. J Appl Meteor, 18(5):639-646.
Shuttleworth W J, Wallace J, 1985. Evaporation from sparse crops-an energy combination theory[J]. Quart J Roy Meteor Soc, 111(469):839-855.
Stewart R B, Rouse W R, 1977. Substantiation of the Priestly and Taylor parameter α=1. 26 for potential evaporation in high latitudes[J]. J Appl Meteor, 16(6):649-650.
Sumner D M, Jacobs J M, 2005. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration[J]. J Hydrol, 308(1):81-104.
Sun L, Song C C, 2008. Evapotranspiration from a freshwater marsh in the Sanjiang Plain, Northeast China[J]. J Hydrol, 352(1):202-210.
Villagarcía L, Were A, García M, et al, 2010. Sensitivity of a clumped model of evapotranspiration to surface resistance parameterisations:Application in a semi-arid environment[J]. Agricultural and Forest Meteorology, 150(7):1065-1078.
Zhang B, Kang S, Li F, et al, 2008. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China[J]. Agricultural and Forest Meteorology, 148(10):1629-1640.
Zhu G F, Su Y H, Li X, et al, 2013. Estimating actual evapotranspiration from an alpine grassland on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty analysis by Bayesian approach[J]. J Hydrol, 476:42-51.
Zhu G F, Su Y H, Li X, et al, 2014. Modelling evapotranspiration in an alpine grassland ecosystem on Qinghai-Tibetan plateau[J]. Hydrological Processes, 28(3):610-619.
丁加丽, 彭世彰, 徐俊增, 等, 2010. 基于Penman-Monteith方程的节水灌溉稻田蒸散量模型[J]. 农业工程学报, 26(4):31-35. Ding J L, Peng S Z, Xu J Z, et al, 2010. Estimation of rice evapotranspiration under controlled irrigation by using Penman-Monteith method[J]. Transactions of the Chinese Society of Agricultural Engineering, 26(4):31-35.
高彦春, 龙笛, 2008. 遥感蒸散发模型研究进展[J]. 遥感学报, 12(3):515-528. Gao Y C, Long D, 2008. Progress in models for evapotranspiration estimation using remotely sensed data[J]. Journal of Remote Sensing, 12(3):515-528.
胡继超, 张佳宝, 冯杰, 2004. 蒸散的测定和模拟计算研究进展[J]. 土壤, 36(5):492-497. Hu J C, Zhang J B, Feng J, 2004. Measurement and estimation of evapotranspiration[J]. Soils, 36(5):492-497.
贾红, 胡继超, 张佳宝, 等, 2008. 应用Shuttleworth-Wallace模型对夏玉米农田蒸散的估计[J]. 灌溉排水学报, 27(4):77-80. Jia H, Hu J C, Zhang J B, et al, 2008. Estimation of Evapotranspiration during the maize growing season using the Shuttleworth-Wallace model[J]. Journal of Irrigation and Drainage, 27(4):77-80.
贾志军, 2014. 三江平原典型下垫面FAO Penman-Monteith模型适用性分析[J]. 应用生态学报, 25(5):1327-1334. Jia Z J, 2014. Adaptability analysis of FAO Penman-Monteith model over typical underlying surfaces in the Sanjiang Plain, Northeast China[J]. Chinese Journal of Applied Ecology, 25(5):1327-1334.
焦醒, 刘广全, 匡尚富, 等, 2010. Penman-Monteith模型在森林植被蒸散研究中的应用[J]. 水利学报, 41(2):245-252. Jiao X, Liu G Q, Kuang S F, et al, 2010. Review on application of Penman-Monteith Equation to studying forest vegetation evapotranspiration[J]. Journal of Hydraulic Engineering, 41(2):245-252.
李放, 沈彦俊, 2014. 地表遥感蒸散发模型研究进展[J]. 资源科学, 36(7):1478-1488. Li F, Shen Y J, 2014. Progress in remote sensing-based models for surface heat and water fluxes[J]. Resour Sci, 36(7):1478-1488.
刘浩, 段爱旺, 孙景生, 等, 2011. 基于Penman-Monteith方程的日光温室番茄蒸腾量估算模型[J]. 农业工程学报, 27(9):208-213. Liu H, Duan A W, Sun J S, et al, 2011. Estimating model of transpiration for greenhouse tomato based on Penman-Monteith equation[J]. Transactions of the Chinese Society of Agricultural Engineering, 27(9):208-213.
刘晓英, 林而达, 刘培军, 2003. Priestley-Taylor与Penman法计算参照作物腾发量的结果比较[J]. 农业工程学报, 19(1):32-36. Liu X Y, Lin E D, Liu P J, 2003. Comparative study on Priestley-Taylor and Penman mdthods in calculating reference crop evapotranspiration[J]. Transactions of the Chinese Society of Agricultural Engineering, 19(1):32-36.
刘远, 周买春, 陈芷菁, 等, 2013. 基于SW模型的韩江流域潜在蒸散发的气候和植被敏感性[J]. 农业工程学报, 29(10):92-100. Liu Y, Zhou M C, Chen Z J, et al, 2013. Sensitivity of the potential evapotranspiration to climate and vegetation in Hanjiang River basin based on S-W Model[J]. Transactions of the Chinese Society of Agricultural Engineering, 29(10):92-100.
莫兴国, 林忠辉, 刘苏峡, 2000. 基于Penman-Monteith公式的双源模型的改进[J]. 水利学报, 5:6-11. Mo X G, Lin Z H, Liu S X, 2000. An improvement of the dual-source model based on Penman-Monteith formula[J]. Journal of Hydraulic Engineering, 5:6-11.
宋璐璐, 尹云鹤, 吴绍洪, 2012. 蒸散发测定方法研究进展[J]. 地理科学进展, 31(9):1186-1195. Song L L, Yin Y H, Wu S H, 2012. Advancements of the metrics of evapotranspiration[J]. Progress in Geography, 31(9):1186-1195.
邢炜光, 2012. 遥感蒸散估算研究进展[J]. 安徽农学通报, 18(11):187-190. Xing W G, 2012. Advances in estimating of the evapotranspiration based on remote sensing method[J]. Anhui Agricultural Science Bulletin, 18(11):187-190.
杨雨亭, 尚松浩, 2012. 双源蒸散发模型估算潜在蒸散发量的对比[J]. 农业工程学报, 28(24):85-91. Yang Y T, Shang S H, 2012. Comparison of dual-source evapotranspiration models in estimating potential evaporation and transpiration[J]. Transactions of the Chinese Society of Agricultural Engineering, 28(24):85-91.
于贵瑞, 2001. 不同冠层类型的陆地植被蒸发散模型研究进展[J]. 资源科学, 23(6):72-84. Yu G R, 2001. Progress in evapotranspiration models of terrestrial vegetation of different canopy types[J]. Resour Sci, 23(6):72-84.
赵华, 申双和, 华荣强, 等, 2015. Penman-Monteith模型中水稻冠层阻力的模拟[J]. 中国农业气象, 36(1):17-23. Zhao H, Shen S H, Hua R Q, et al, 2015. Simulation of canopy resistance for Paddy rice based on Penman-Monteith model[J]. Chinese J Agrometeor, 36(1):17-23.
[1] 严晓强, 胡泽勇, 孙根厚, 谢志鹏. 那曲高寒草地上四种地表通量计算方法的对比[J]. 高原气象, 2018, 37(2): 358-370.
[2] 苏东生, 胡秀清, 文莉娟, 赵林, 李照国. 青海湖热力状况对气候变化响应的数值研究[J]. 高原气象, 2018, 37(2): 394-405.
[3] 李宏毅, 肖子牛, 朱玉祥. 藏东南草地下垫面地气通量交换日变化的数值模拟[J]. 高原气象, 2018, 37(2): 443-454.
[4] 高冠龙, 冯起, 张小由, 鱼腾飞. 黑河下游影响荒漠河岸胡杨林蒸腾的冠层与大气耦合分析[J]. 高原气象, 2018, 37(1): 234-239.
[5] 许启慧, 范引琪, 井元元, 杜康云, 张金龙, 刘金平. 1972—2013年河北省大气环境容量的气候变化特征分析[J]. 高原气象, 2017, 36(6): 1682-1692.
[6] 陈丽晶, 张镭, 梁捷宁, 周旭. 半干旱区不同下垫面大气湍流通量比较分析[J]. 高原气象, 2017, 36(5): 1325-1335.
[7] 李晓霞, 黄涛, 王兴, 梁东升. 兰州新区近地层风场时空特征分析[J]. 高原气象, 2017, 36(4): 1001-1009.
[8] 高世仰, 张杰, 罗琦. 青藏高原非均匀下垫面热力输送系数的估算[J]. 高原气象, 2017, 36(3): 596-609.
[9] 孙少波, 陈报章, 车涛, 张慧芳, 陈婧, 车明亮, 林晓凤, 郭立峰. 青藏高原季节性冻土湿度模拟及参数优化——以黑河上游为例[J]. 高原气象, 2017, 36(3): 643-656.
[10] 张新科, 陈晋北, 余晔, 赵素平, 贾伟. 雷暴系统影响下的黄土高原塬区微气象特征研究[J]. 高原气象, 2017, 36(2): 384-394.
[11] 贾东于, 文军, 马耀明, 刘蓉, 王欣, 周娟, 陈金雷. 植被对黄河源区水热交换影响的研究[J]. 高原气象, 2017, 36(2): 424-435.
[12] 李怀香, 刘绍民, 施生锦, 徐自为, 朱忠礼. 国产光学型大孔径闪烁仪的技术性能分析[J]. 高原气象, 2017, 36(2): 575-585.
[13] 徐安伦, 李建, 彭浩, 孙绩华. 洱海湖滨农田下垫面大口径闪烁仪与涡动相关仪测量的湍流热通量对比分析[J]. 高原气象, 2017, 36(1): 98-106.
[14] 万云霞, 张宇, 张瑾文, 彭艳秋. 感热变化对东亚地区大气边界层高度的影响[J]. 高原气象, 2017, 36(1): 173-182.
[15] 刘勇洪, 房小怡, 栾庆祖. 基于卫星数据与GIS技术的北京地区粗糙度长度估算研究[J]. 高原气象, 2016, 35(6): 1625-1638.