Please wait a minute...
高级检索
高原气象  2017, Vol. 36 Issue (6): 1638-1654    DOI: 10.7522/j.issn.1000-0534.2016.00138
论文     
黄河中游地区初春与盛夏MCC结构特征比较分析
赵桂香, 王晓丽, 王一颉
山西省气象台, 山西 太原 030006
Comparative Analysis of Structure Characteristics of MCC over the Yellow River Midstream between the Spring and the Summer
ZHAO Guixiang, WANG Xiaoli, WANG Yijie
Shanxi Meteorological Observatory, Taiyuan 030006, Shanxi, China
 全文: PDF(16220 KB)  
摘要: 利用气象常规观测资料、自动站加密资料、NCEP 1°×1°再分析资料以及卫星资料,对2015年4月1日和8月2日黄河中游地区的两个MCC结构特征进行了对比分析。结果表明:(1)春季MCC形成阶段发展快、成熟期慢,具有前向传播的特点,降水较为稳定,雨团移动慢,暴雨主要由降水持续时间长造成;盛夏MCC形成慢、发展迅速,为后向传播,以对流性降水为主,雨团移动性强,暴雨主要由短时强降水造成;在不同生命阶段,小时最大雨量出现在不同区域。(2)春季MCC生成于整层为西南气流、大气斜压性较强的背景下,散度场表现为垂直的空间结构特征,而盛夏MCC生成于500 hPa平直西风环流、200 hPa反气旋前沿、大气斜压性弱的背景下,散度场为倾斜的空间结构;在它们的后期发展过程中,水汽、热力和动力结构均存在显著差异。(3)两个MCC均形成发展于条件不稳定、对流不稳定和对称不稳定共存的区域,但MCC的形成与不稳定度和不稳定能量大小有关,它们的发展则与不稳定能量的持续增大和对称不稳定度持续增强关系更密切,盛夏尤其如此。(4)中高层干冷空气侵入、曲率涡度造成的整层辐合上升运动持续加强以及对称不稳定是春季MCC的重要触发机制,而切变涡度引起的低层中尺度辐合上升、对称不稳定和重力波传播是盛夏MCC的主要触发机制。
关键词: MCC不稳定曲率涡度和切变涡度重力波    
Abstract: Based on observational data, encryption data of automatic station, NCEP reanalysis and satellite data, the structure characteristics of MCC occurred on 1 April and 2 August 2015 over the Yellow River midstream was comparatively analyzed. The results are as follows:(1) The formation stage of spring MCC was fast and mature was slow. It has forward propagation feature. Precipitation was stable, rain clusters moved slowly, and the rainstorm was mainly caused by long duration of precipitation. While the formation stage of summer MCC was slow and mature was rapid. It has backward propagation feature. It was mainly convective precipitation, rain clusters were mobility, and heavy rainfall mainly caused by short-period strong precipitation. Maximum hourly rainfall occurred in different areas at different stages of their life time. (2) The spring MCC was formed under the background of the southwest airflow at the whole layers and strong baroclinic property. The spatial structure characteristics of the divergence field was vertical. But the summer MCC was formed under the background of flat westerly circulation on 500 hPa, front of anticyclone on 200 hPa, and the weak baroclinic property. The spatial structure characteristics of the divergence field was declining. In their later development, there were significant differences in water vapor, thermal and dynamic structure. (3) Two MCC were formed and developed in the coexistence region of conditional, convective, and symmetric instability. The formation of MCC was related to the instability and the unstable energy, but their development were more closely related to the continuous increase of the unstable energy, and continuous enhancement of symmetric instability, especially in midsummer. (4) Intrusion of dry cold air at middle and upper layer, continuous strengthening of convergent ascending motion caused by the curvature vorticity at the whole layers, and symmetric instability were important triggering mechanisms of MCC in spring. Mesoscale convergent ascending motion at lower layer caused by shear vorticity, symmetric instability, and gravity wave propagation were the main triggering mechanisms of MCC in midsummer.
Key words: MCC    instability    curvature and shear vorticity    gravity wave
收稿日期: 2016-06-17 出版日期: 2017-12-20
ZTFLH:  P44  
基金资助: 国家自然科学基金项目(41475050)
作者简介: 赵桂香(1965),女,山西平遥人,正研级高工,主要从事中尺度数值诊断和灾害天气预报技术研究E-mail:liyun0123@126.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵桂香
王晓丽
王一颉

引用本文:

赵桂香, 王晓丽, 王一颉. 黄河中游地区初春与盛夏MCC结构特征比较分析[J]. 高原气象, 2017, 36(6): 1638-1654.

ZHAO Guixiang, WANG Xiaoli, WANG Yijie. Comparative Analysis of Structure Characteristics of MCC over the Yellow River Midstream between the Spring and the Summer. PLATEAU METEOROLOGY, 2017, 36(6): 1638-1654.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2016.00138        http://www.gyqx.ac.cn/CN/Y2017/V36/I6/1638

Houze R A, Rutledge S A, Smull B F, 1989. Interpretation of doppler weather radar displays of mid-latitude mesoscale convective systems[J]. Bull Amer Meteor Soc, 70:608-619.
Laing A G, Fritsch J M, 2000. The large scale environments of the global populations of mesoscale convective complexes[J]. Mon Wea Rev, 128:2756-2776.
Maddox R A, 1980. Meso-scale convective complex[J]. Bull Amer Meter Sco, 61:1374-1387.
McAnelly R L, Nachamkin J E, Cotton W R, et al, 1997. Upscale evolution of MCSs:Doppler radar analysis and analytical investigation[J]. Mon Wea Rev, 125:1083-1110.
Schultz D M, Schumacher P N, Doswell C A, 2000. The intricacies of instabilities[J]. Mon Wea Rev, 128:4143-4148.
Schultz DM, Schumacher P N, 1999. Review:The use and misuse of conditional symmetric instability[J]. Mon Wea Rev, 127:2709-2732.
Sherwood S C, 2000. On moist instability[J]. Mon Wea Rev, 128:4139-4142.
Smull B F, Augustine J A, 1993. Multi-scale analysis of a mature mesoscale complex[J]. Mon Wea Rev, 121:103-131.
曾波, 葚芸, 李泽椿, 2016. 中国中东部地区夏季中尺度对流系统发生前环境场特征析[J]. 高原气象, 35(2):460-468. Zeng B, Shen Y, Li Z C. 2016. Characteristic of precursor environment of mesoscale convective system during Summer in Central-Eastern China[J]. Plateau Meteor, 35(2):460-468. DOI:10. 7522/j. issn. 1000-0534. 2015. 00003.
常煜, 李秀娟, 陈超, 等, 2016. 内蒙古一次暴雨过程中尺度特征及成因分析[J]. 高原气象, 35(2):432-443. Chang Y, Li X J, Chen C, et al, 2016. Mesoscale characteristics of a rainstorm process in Inner Mongolia and its cause analysis[J]. Plateau Meteor, 35(2):432-443. DOI:10. 7522/j. issn. 1000-0534. 2014. 00155.
程麟生, Kuo Y H, 冯伍虎, 等, 2000. 双向三重嵌套和"98·7" 特大暴雨模拟[M]. 高科技研究中的数值计算. 第六卷. 北京, 科学与工程计算丛书编辑部出版. 346-351. Cheng L S, Kuo Y H, Feng W H, et al, 2000. Two-way triple nested and simulation on the heavy rainfall during July 1998[M]. Numerical calculation in the study of high-tech. The sitxh volume. Beijing. Books published the editorial science and engineering calculation. 346-351.
程麟生, 冯伍虎, 2001. "98. 7" 突发大暴雨及中尺度低涡结构的分析和数值模拟[J]. 大气科学, 25(4):465-478. Cheng L S, Feng W H, 2001. Analyses and numerical simulation on a abrupt heavy rainfall and structure of a mesocale vortex during July 1998[J]. Chinese J Atmos Sci, 25(4):465-478.
程麟生, 冯伍虎, 2002. 中纬度中尺度对流系统研究的若干进展[J]. 高原气象, 21(4):337-347. Cheng L S, Feng W H, 2002. A number of advances of the research on mid-latitude mesoscale convective systems[J]. Plateau Meteor, 21(4):337-347.
丁一汇, 1989. 天气动力学中的诊断分析方法[M]. 北京, 科学出版社, 293. Ding Y H, 1989. Diagnostic analysis method of the weather dynamics[M]. Beijing, Science Press, 293.
范俊红, 王欣璞, 孟凯, 等, 2009. 一次MCC的云团特征及成因分析[J]. 高原气象, 28(6):1388-1398. Fan J H, Wang X P, Meng K, et al, 2009. Satellite cloud image feature of a MCC and forming cause analysis[J]. Plateau Meteor, 28(6):1388-1398.
郭大梅, 刘勇, 马晓华, 等, 2015. 一次异常路径持续强降水中尺度对流系统分析[J]. 高原气象, 34(6):1648-1657. Guo D M, Liu Y, Ma X H, et al, 2015. Analysis on unusual path associated with mesoscale convective system in a continuous heavy rain[J]. Plateau Meteor, 34(6):1648-1657. DOI:10. 7522/j. issn. 1000-0534. 2014. 00076.
郭虎, 季崇萍, 张琳娜, 等, 2006. 北京地区2004年7月10日局地暴雨过程中的波动分析[J]. 大气科学, 30(4):703-711. Guo H, Ji C P, Zhang L N, et al, 2006. A case study of local rainstorm in Beijing on 10 July 2004:the analysis of the gravity wave[J]. Chinese J Atmos Sci, 30(4):703-711.
候建忠, 孙伟, 杜继稳, 2005. 青藏高原东北侧一次MCC的环境流场和动力分析[J]. 高原气象, 24(5):805-810. Hou J Z, Sun W, Du J W, 2005. Analyses on circulation and dynamic features of a MCC on the side of northeast Qinghai-Xizang Plateau[J]. Plateau Meteor, 24(5):805-810.
黄治勇, 谌伟, 张文, 等, 2012. 长江中下游深秋季节一次MCC过程的成因[J]. 长江流域资源与环境, 21(8):1025-1031. Huang Z Y, Shen W, Zhang W, et al, 2012. Mechanism analysis of a MCC event in late autumn over the middle and lower reaches of the Yangtze River[J]. Res Environ the Yangtze Basin, 21(8):1025-1031.
井喜, 高青云, 杨静, 等, 2011. 两个不同降水量级的MCC对比分析[J]. 高原气象, 30(2):328-338. Jing X, Gao Q Y, Yang J, et al, 2011. Comparative analysis on MCC of two different precipitation magnitudes[J]. Plateau Meteor, 30(6):349-357.
井喜, 井宇, 李明娟, 2009. 淮河流域一次MCC的环境流场及动力分析[J]. 高原气象, 28(6):349-357. Jing X, Jing Y, Li M J, 2009. Environmental streamline field and dynamic analysis of a MCC in Huaihe Valley[J]. Plateau Meteor, 28(6):349-357.
康凤琴, 肖稳安, 2001. 我国南方MCC的涡度、水汽和热量收支平衡[J]. 高原气象, 20(3):332-339. Kang F Q, Xiao W A, 2001. The vorticity, heat, moisture budget evolution of MCC over South China[J]. Plateau Meteor, 20(3):332-339.
廖洞贤, 1963. 切变涡度和曲率涡度在正压大气中的相互转化及其在天气预报中的应用[J]. 气象学报, 33(4):512-517. Liao D X, 1963. The transformation of curvature vorticity and shearing vorticity in barotropic atmosphere and its application to weather prediction[J]. Acta Meteor Sinica, 33(4):512-517.
黎惠金, 李向红, 黄芳, 等, 2013. 广西一次特大暴雨的MCC演变过程及结构特征分析[J]. 高原气象, 32(3):806-817. Li H J, Li X H, Huang F, et al, 2013. Analyses on triggered MCC evolution process and structural characteristic in a heavy rainstorm in Guangxi[J]. Plateau Meteor, 32(3):806-817, DOI:10. 7522/j. issn. 1000-0534. 2012. 00074.
吕艳彬, 郑永光, 李亚萍, 等, 2002. 华北平原中尺度对流复合体发生的环境和条件[J]. 应用气象学报, 13(4):406-412. Lü Y B, Zheng Y G, Li Y P, et al, 2002. Environment and conditions of mesoscale convective complex development in North China Plain[J]. Quart J Appl Meteor, 13(4):406-412.
覃丹宇, 江吉喜, 方宗义, 等, 2004. MCC和一般暴雨云团发生发展的物理条件差异[J]. 应用气象学报, 15(5):590-600. Qin D Y, Jiang J X, Fang Z Y, et al, 2004. The differences of synoptic physical condition between MCC and meso-β-scale convective cloud cluster[J]. Quart J Appl Meteor, 15(5):590-600.
覃卫健, 寿绍文, 王咏青, 2013. 大气对流层重力波研究进展[J]. 气象科技, 41(5):864-869. Qin W J, Shou S W, Wang Y Q, 2013. Progresses in researches on tropospheric gravity waves[J]. Meteor Sci Technol, 41(5):864-869.
寿绍文, 励申申, 姚秀萍, 2003. 中尺度气象学(第一版)[M]. 北京, 气象出版社, 145-146, 148-150. Shou S W, Li S S, Yao X P, 2003. Mesoscale meteorology[M]. Beijing, China Meteorological Press, 145-146, 148-150.
王婧羽, 崔春光, 王晓芳, 等, 2014. 2012年7月21日北京特大暴雨过程中的水汽输送特征分析[J]. 气象, 40(2):133-145. Wang J Y, Cui C G, Wang X F, et al, 2014. Analysis on water vapor transport and budget of the severe torrential rain over Beijing region on 21 July 2012[J]. Meteor Mon, 40(2):133-145.
徐小英, 郑德娟, 黄文忠, 1986. 应用KY指数作广州前汛期降水预报[J]. 气象, 12(4):20-22. Xu X Y, Zheng D J, Huang W Z, 1986. Pre-rainy season precipitation forecast in Guangzhou using KY-exponent[J]. Meteor Mon, 12(4):20-22.
杨静, 杜小玲, 齐大鹏, 等, 2015. 云贵高原东段山地MCC的普查和降水特征[J]. 高原气象, 34(5):1249-1260. Yang J, Du X L, Qi D P, et al, 2015. MCC survey and rainfall characteristic in east Mountain of Yunnan-Guizhou Plateau[J]. Plateau Meteor, 34(5):1249-1260. DOI:10. 7522/j. issn. 1000-0534. 2014. 00060.
尤红, 肖子牛, 王曼, 等, 2010. 2008年"7·02"滇中大暴雨的成因诊断与数值模拟[J]. 气象, 36(1):7-16. You H, Xiao Z N, Wang M, et al, 2010. Diagnotistic analysis and mesoscale numerical simulation of extremely heavy rainstorm on 2 July 2008 in middle of Yunnan[J]. Meteor Mon, 36(1):7-16.
张晰莹, 吴英, 王承伟, 等, 2010. 东北地区MCC雷达回波特征分析[J]. 气象, 36(8):32-39. Zhang X Y, Wu Y, Wang C W, et al, 2010. Analysis on MCC echo characters of Doppler Radar in Northeast China[J]. Meteor Mon, 36(8):32-39.
张艳霞, 蒙伟光, 戴光丰, 等, 2015. 台风"凡比亚"登陆过程中暴雨MCSs演变及形成机理[J]. 热带气象学报, 31(4):433-443. Zhang Y X, Meng W G, Dai G F, et al, 2015. The evolution and formation mechanism of rainstorms MCSs during typhoon Fnanpi landing[J]. J Trop Meteor, 31(4):433-443.
张迎新, 李宗涛, 姚学祥, 2015. 京津冀"7·21"暴雨过程的中尺度分析[J]. 高原气象, 34(1):202-209. Zhang Y X, Li Z T, Yao X X, 2015. Analysis on mesoscale system of torrential rain occurring over North China on 21 July 2012[J]. Plateau Meteor, 34(1):202-209. DOI:10. 7522/j. issn. 1000-0534. 2013. 00096.
赵桂香, 赵建峰, 杨东, 等, 2013. 山西一次大暴雨过程云图及环境场的特征分析[J]. 高原气象, 32(6):1747-1757. Zhao G X, Zhao J F, Yang D, et al, 2013. Characteristics of cloud chart and environment field on a heavy rain process in Shanxi Province[J]. Plateau Meteor, 32(6):1747-1757. DOI:10. 7522/j. issn. 1000-0534. 2012. 00163.
钟晓平, 杨淑群, 朱远琼, 1994. 青藏高原东部地区中尺度对流复合体的降水特征[J]. 高原气象, 13(2):113-121. Zhong X P, Yang S Q, Zhu Y Q, 1994. The precipitation characteristics of mesoscale convective complexes over the eastern region of the Qinghai-Xizang Plateau[J]. Plateau Meteor, 13(2):113-121.
周玉淑, 高守亭, 邓国, 2005. 江淮流域2003年强梅雨期的水汽输送特征分析[J]. 大气科学, 29(2):195-204. Zhou Y S, Gao S T, Deng G, 2005. A diagnostic study of water vapor transport and budget during heavy precipitation over the Changjiang River and the Huaihe River Basins in 2003[J]. Chinese J Atmos Sci, 29(2):195-204.
朱乾根, 林锦瑞, 寿绍文, 等, 2007. 天气学原理和方法(第四版)[M]. 北京:气象出版社, 111-112, 114. Zhu Q G, Lin J R, Shou S W, et al, 2007. Principle of synoptic meteorology[M]. Beijing:China Meteorological Press, 111-112, 114.
[1] 段圣泽, 张英华, 顾宇. 冬季厄尔尼诺对酒泉2016年夏季降水的影响[J]. 高原气象, 2018, 37(2): 545-552.
[2] 高文良, 郁淑华. 高原涡诱发西南涡伴行个例的环境场与成因分析[J]. 高原气象, 2018, 37(1): 54-67.
[3] 段旭, 段玮, 邢冬, 张亚男. 冬春季昆明准静止锋与云贵高原地形的关系[J]. 高原气象, 2018, 37(1): 137-147.
[4] 刘晶, 李娜, 陈春艳. 新疆北部一次暖区暴雪过程锋面结构及中尺度云团分析[J]. 高原气象, 2018, 37(1): 158-166.
[5] 肖贻青. 乌拉尔山阻塞与北大西洋涛动的关系及其对中国冬季天气的影响[J]. 高原气象, 2017, 36(6): 1499-1511.
[6] 李黎, 刘海文, 吕世华. 春季西南低涡年际和年代际变化特征分析[J]. 高原气象, 2017, 36(6): 1512-1520.
[7] 王文, 许金萍, 蔡晓军, 孙畅. 2013年夏季长江中下游地区高温干旱的大气环流特征及成因分析[J]. 高原气象, 2017, 36(6): 1595-1607.
[8] 严小冬, 宋燕, 黄晨然, 杨春艳, 夏阳. 贵州省冬季气温的时空特征及其与海气的关系[J]. 高原气象, 2017, 36(5): 1336-1345.
[9] 方翀, 王西贵, 盛杰, 曹艳察. 华北地区雷暴大风的时空分布及物理量统计特征分析[J]. 高原气象, 2017, 36(5): 1368-1385.
[10] 许霖, 姚蓉, 王晓雷, 欧小峰. 湖南省雷暴大风的时空分布和变化特征[J]. 高原气象, 2017, 36(4): 993-1000.
[11] 姚秀萍, 孙建元, 马嘉理. 江淮切变线研究的回顾与展望[J]. 高原气象, 2017, 36(4): 1138-1151.
[12] 李超, 李跃清, 蒋兴文. 夏季长生命史盆地涡活动对川渝季节降水的影响[J]. 高原气象, 2017, 36(3): 685-696.
[13] 张赟程, 王晓峰, 张蕾, 束炯. 海风与热岛耦合对上海强对流天气影响的数值模拟[J]. 高原气象, 2017, 36(3): 705-717.
[14] 周天娇 陈丹 王咏青 郭栋. 不同类型和强度的东亚切断低压过程中UTLS区域臭氧变化对比分析[J]. 高原气象, 2017, 36(1): 0-0.
[15] 孙靖, 程光光. 北京城区热动力条件对雷暴下山后强度的影响[J]. 高原气象, 2017, 36(1): 207-218.