Please wait a minute...
高级检索
高原气象  2017, Vol. 36 Issue (6): 1655-1664    DOI: 10.7522/j.issn.1000-0534.2017.00006
论文     
基于CloudSat资料的中国地区深对流云物理特征研究
杨冰韵, 吴晓京, 郭徵
国家卫星气象中心, 北京 100081
The Characteristics of Cloud Properties in Deep Convective Clouds across China with the CloudSat Dataset
YANG Bingyun, WU Xiaojing, GUO Zheng
National Satellite Meteorological Center, Beijing 100081, China
 全文: PDF(9082 KB)  
摘要: 利用2007-2010年和2013-2014年CloudSat卫星资料,分析了中国11个地理区域的深对流云发生率、冰/液态水路径、冰/液态水含量等分布特征及其季节变化。结果显示,深对流云发生率整体呈现从东南到西北递减的趋势,高值区主要集中在西北地区东南部、西藏东南部、西南地区东部和南部、黄淮西部和南部、江汉、江淮、江南和华南等地,就各个地区不同季节而言,江南地区夏季的值最大,达到10.34%。在垂直高度上,深对流云发生率分布在18 km以下,最大值为11.31%,出现在江南夏季4.08~4.56 km高度上。深对流云中冰水路径最大值出现在华南夏季,液态水路径最大值出现在黄淮秋季,西藏地区的深对流云中冰水路径的比例明显高于液态水路径。冰水含量在垂直高度上存在两个高值区,分别位于6~8 km、14~18 km,最大值发生在江南夏季19.44 km左右高度上,达到1 018.87 mg·m-3,季节差异较大的高度位于14~18 km。液态水含量最大值发生在江淮冬季,达到411.50 mg·m-3,高度在9.36 km左右,垂直高度上最大值在2~6 km上均有出现。该结果可以更好地揭示深对流云的气候特征,并为人工影响天气以及数值模式中对深对流云物理量的模拟提供一定的参考依据。
关键词: CloudSat深对流云云水含量    
Abstract: The deep convective clouds are important regulators of the earth-atmosphere system and also closely relate to the formation of many extreme weathers such as downbursts, storms and lightning. The measurement of cloud profile radar (CPR) from CloudSat has the advantage in detecting the accurate properties in deep convective clouds in different altitudes. The spatial and temporal variations of the probability and cloud microphysical properties in deep convective clouds, for exemple, the ice water content (IWC), liquid water content (LWC), ice water path (IWP) and liquid water path (LWP), were analyzed across eleven sub-regions in China based on the CloudSat dataset during 2007-2010 and 2013-2014. The results indicate that the probability of deep convective clouds decreased from southeast to northwest parts generally. The high values were mainly concentrated over the southeast of Northwest China, the southeast of Tibet, the east and south of Southwest China, the west and south of Huanghuai, Jianghan, Jianghuai, Jiangnan, and South China. Generally, it can be demonstrated that the deep convective clouds are more likely to occur in summer. For each area in different seasons, the highest value of the probability of deep convective clouds in total altitudes was 10.34% over Jiangnan in summer. The value of probability was much larger over Jiangnan, Jianghan, Jianghuai or Huanan than other areas, while it was lower over Northwest China. Moreover, among the different altitudes, the probabilities were located below 18 km and the maximum reached 11.31% at roughly 4.08~4.56 km over Jiangnan. The maximum value of IWP and LWP occurred over South China in summer and Huanghuai in autumn, respectively. Over Tibet, the value of IWP was much larger than that of LWP in the deep convective clouds, because the average altitude of Tibet was relatively high and the ice clouds were formed much easily than liquid clouds. Vertically, the maximum IWC with a magnitude of 1 018.87 mg·m-3 occurred near the altitude of 19.44 km over Jiangnan in summer. Two peaks of IWC were detected at 6~8 km, and 14~18 km where the significant seasonal difference occurred. In addition, the maximum LWC was 411.50 mg·m-3 at the altitude of 9.36 km over Jianghuai in winter and the peak of LWC in the vertical height occurred from 2 km to 6 km. The results in this work can explain climatic features of deep convective clouds and provide an observational basis for weather modification and simulations of deep convective clouds in models.
Key words: CloudSat    deep convective cloud    cloud water content
收稿日期: 2016-10-26 出版日期: 2017-12-20
ZTFLH:  P426.5  
基金资助: 国家自然科学基金项目(41675110);公益性行业(气象)科研专项(GYHY201406035-3);国家卫星气象中心青年基金项目(201602QT001)
通讯作者: 吴晓京.E-mail:wuxj8@cma.gov.cn     E-mail: wuxj8@cma.gov.cn
作者简介: 杨冰韵(1989),女,河南南阳人,硕士研究生,主要从事卫星遥感资料分析、云-辐射相互作用研究.E-mail:yangby@cma.gov.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨冰韵
吴晓京
郭徵

引用本文:

杨冰韵, 吴晓京, 郭徵. 基于CloudSat资料的中国地区深对流云物理特征研究[J]. 高原气象, 2017, 36(6): 1655-1664.

YANG Bingyun, WU Xiaojing, GUO Zheng. The Characteristics of Cloud Properties in Deep Convective Clouds across China with the CloudSat Dataset. PLATEAU METEOROLOGY, 2017, 36(6): 1655-1664.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00006        http://www.gyqx.ac.cn/CN/Y2017/V36/I6/1655

Austin R T, 2007. Level 2B radar-only cloud water content (2B-CWC-RO) process description document[R]. CloudSat project report, 5:1-26.
Fu R, Del Genio A D, Rossow W B, 1990. Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiances[J]. J Climate, 3(10):1129-1152.
Heintzenberg J, Charlson R J, Brenguier J L, et al, 2009. Clouds in the perturbed climate system-their relationship to energy balance, atmospheric dynamics, and precipitation[C]//Ernst Stru ngmann Forum (2008:Frankfurt, Germany). Cambridge:MIT press.
Hu Y, Rodier S, Xu K, et al, 2010. Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/ⅡR/MODIS measurements[J]. J Geophys Res, 115(D4):D00H34. DOI:10. 1029/2009JD012384.
Luo Y, Zhang R, Qian W, et al, 2011. Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data[J]. J Climate, 24(8):2164-2177.
Luo Z, Liu G Y, Stephens G L, 2008. CloudSat adding new insight into tropical penetrating convection[J]. Geophys Res Lett, 35(19):L19819. DOI:10. 1029/2008GL035330.
Sassen K, Wang Z, Liu D, 2008. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements[J]. J Geophys Res, 113(D8):D00A12. DOI:10. 1029/2008JD009972.
Sassen K, Wang Z, Liu D, 2009. Cirrus clouds and deep convection in the tropics:Insights from CALIPSO and CloudSat[J]. J Geophys Res, 114(D4):D00H06. DOI:10. 1029/2009JD011916.
Takahashi H, Luo Z J, 2014. Characterizing tropical overshooting deep convection from joint analysis of CloudSat and geostationary satellite observations[J]. J Geophys Res, 119(1):112-121.
Tian J, Dong X, Xi B, et al, 2016. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements[J]. J Geophys Res, 121(18):10820-10839. DOI:10. 1002/2015JD024686.
Wang Z, Sassen K, 2001. Cloud type and macrophysical property retrieval using multiple remote sensors[J]. J Appl Meteor, 40(10):1665-1682.
Wang Z, Sassen K, 2007. Level 2 cloud scenario classification product process description and interface control document[J]. Colorado State University:Cooperative Institute for Research in the Atmosphere, 5:50.
Young A H, Bates J J, Curry J A, 2012. Complementary use of passive and active remote sensing for detection of penetrating convection from CloudSat, CALIPSO, and Aqua MODIS[J]. J Geophys Res, 117(D13):D13205. DOI:10. 1029/2011JD016749.
Yuan J, Houze Jr R A, Heymsfield A J, 2011. Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat[J]. J Atmos Sci, 68(8):1653-1674.
柏晶瑜, 徐祥德, 于淑秋, 2003. 青藏高原东南部夏季深对流加热研究[J]. 气象科技, 31(1):18-22. Bai J Y, Xu X D, Yu S Q, 2003. Summer time deep convection heating over southeast of Tibetan plateau[J]. Meteor Sci Technol, 31(1):18-22.
陈国春, 郑永光, 肖天贵, 2011. 我国暖季深对流云分布与日变化特征分析[J]. 气象, 37(1):75-84. Chen G C, Zheng Y G, Xiao T G, 2011. Distribution and spatiotemporal variations of deep convective clouds over China during the warm season[J]. Meteor Mon, 37(1):75-84.
陈玲, 周筠臖, 2015. 青藏高原和四川盆地夏季降水云物理特性差异[J]. 高原气象, 34(3):621-632. Chen L, Zhou Y J, 2015. Different physical properties of summer precipitation clouds over Qinghai-Xizang plateau and Sichuan basin[J]. Plateau Meteor, 34(3):621-632. DOI:10. 7522/j. issn. 1000-0534. 2014. 00036.
陈隆勋, 宋玉宽, 刘骥平, 等, 1999. 从气象卫星资料揭示的青藏高原夏季对流云系的日变化[J]. 气象学报, 57(5):549-560. Chen L X, Song Y K, Liu J P, et al, 1999. On the diurnal variation of convection over Qinghai-Xizang plateau during summer as revealed from meteorological satellite data[J]. Acta Meteor Sinica, 57(5):549-560.
方翔, 邱红, 曹志强, 等, 2008. 应用AMSU-B微波资料识别强对流云区的研究[J]. 气象, 34(3):22-29. Fang X, Qiu H, Cao Z Q, et al, 2008. Research on severe convective cloud identification by using AMSU-B microwave data[J]. Meteor Mon, 34(3):22-29.
胡雯, 黄勇, 汪腊宝, 2010. 夏季江淮区域对流云合并的基本特征及影响[J]. 高原气象, 29(1):206-213. Hu W, Huang Y, Wang L B, 2010. Characteristic and effect of convective cloud merger in Yangtze and Huaihe river basins in summer[J]. Plateau Meteor, 29(1):206-213.
江吉喜, 范梅珠, 2002. 夏季青藏高原上的对流云和中尺度对流系统[J]. 大气科学, 26(2):263-270. Jiang J X, Fan M Z, 2002. Convective clouds and mesoscale convective systems over the Tibetan plateau in summer[J]. Chinese J Atmos Sci, 26(2):263-270.
李浩然, 孙学金, 王旻燕, 等, 2015. 中国及周边地区白天各类云及其水凝物变化特征研究[J]. 高原气象, 34(6):1625-1635. Li H R, Sun X J, Wang M Y, et al. 2015. Research on different types of cloud and variation characteristics of hydrometeors in cloud over China and its neighborhood in daytime[J]. Plateau Meteor, 34(6):1625-1635. DOI:10. 7522/j. issn. 1000-0534. 2014. 00129.
李跃清, 张琪, 2014. 西南地区夏季云量与降水的关系特征分析[J]. 自然资源学报, 29(3):441-453. Li Y Q, Zhang Q, 2014. Contemporaneous relationships between summer cloudiness and precipitation over Southwest China[J]. J Nat Resour, 29(3):441-453.
马占山, 刘奇俊, 秦琰琰, 2016. GRAPES_GFS 不同湿物理过程对云降水预报性能的诊断与评估[J]. 高原气象, 35(4):989-1003. Ma Z S, Liu Q J, Qin Y Y, 2016. Validation and evaluation of cloud and precipitation forecast performance by different moist physical processes schemes in GRPAES_GFS Model[J]. Plateau Meteor, 35(4):989-1003. DOI:10. 7522/j. issn. 1000-0534. 2015. 00069.
祁秀香, 郑永光, 2009. 2007年夏季我国深对流活动时空分布特征[J]. 应用气象学报, 20(3):286-294. Qi X X, Zheng Y G, 2009. Distribution and spatiotemporal variations of deep convection over China and its vicinity during the summer of 2007[J]. J Appl Meteor Sci, 20(3):286-294.
邱红, 方翔, 谷松岩, 等, 2007. 利用AMSU 分析热带气旋结构特征[J]. 应用气象学报, 18(6):810-820. Qiu H, Fang X, Gu S Y, et al, 2007. The structure of tropical cyclone from advanced microwave sounding unit[J]. J Appl Meteor Sci, 18(6):810-820
苏爱芳, 银燕, 吕晓娜, 等, 2013. 黄淮西部地貌过渡区深对流云的时空特征及其天气意义[J]. 气象学报, 71(3):383-396. Su A F, Yin Y, Lü X N, et al, 2013. Spatial-temporal characteristics and synoptic significance of deep convective clouds over the physiognomy transition region of western Huanghuai[J]. Acta Meteor Sinica, 71(3):383-396.
王胜杰, 何文英, 陈洪滨, 等, 2010. 利用CloudSat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量[J]. 高原气象, 29(1):1-9. Wang S J, He W Y, Chen H B, et al, 2010. Statistics of cloud height over the Tibetan Plateau and its surrounding region derived from the CloudSat Data[J]. Plateau Meteor, 29(1):1-9.
王帅辉, 韩志刚, 姚志刚, 2010. 基于CloudSat和ISCCP资料的中国及周边地区云量分布的对比分析[J]. 大气科学, 34(4):767-779. Wang S H, Han Z G, Yao Z G, 2010. Comparison of cloud amounts from ISCCP and CloudSat over China and its neighborhood[J]. Chinese J Atmos Sci, 34(4):767-779.
王帅辉, 韩志刚, 姚志刚, 等, 2011. 基于CloudSat资料的中国及周边地区云垂直结构统计分析[J]. 高原气象, 30(1):38-52. Wang S H, Han Z G, Yao Z G, 2011. Analysis on cloud vertical structure over China and its neighborhood based on CloudSat data[J]. Plateau Meteor, 30(1):38-52.
杨冰韵, 张华, 彭杰, 等, 2014. 利用 CloudSat 卫星资料分析云微物理和光学性质的分布特征[J]. 高原气象, 33(4):1105-1118. Yang B Y, Zhang H, Peng J, et al, 2014. Analysis on global distribution characteristics of cloud microphysical and optical properties based on the CloudSat data[J]. Plateau Meteor, 33(4):1105-1118. DOI:10. 7522/j. issn. 1000-0534. 2013. 00026.
叶培龙, 王天河, 尚可政, 等, 2014. 基于卫星资料的中国西部地区云垂直结构分析[J]. 高原气象, 33(4):977-987. Ye P L, Wang T H, Shang K Z, et al, 2014. Analysis of cloud vertical structure over western China based on active satellite data[J]. Plateau Meteor, 33(4):977-987. DOI:10. 7522/j. issn. 1000-0534. 2013. 00158.
银燕, 曲平, 金莲姬, 等, 2010. 热带深对流云对CO, NO, NOx和O3的垂直输送作用[J]. 大气科学, 34(5):925-936. Yin Y, Qu P, Jin L J, 2010. Vertical transport of CO, NO, NOx, and O3 by tropical deep convective clouds[J]. Chinese J Atmos Sci, 34(5):925-936.
尹金方, 王东海, 翟国庆, 等, 2013. 基于星载云雷达资料的东亚大陆云垂直结构特征分析[J]. 气象学报, 71(1):121-133. Yin J F, Wang D H, Zhai G Q, et al, 2013. A study of cloud vertical profiles from the Cloudsat data over the East Asian continent[J]. Acta Meteor Sinica, 71(1):121-133
张华, 杨冰韵, 彭杰, 等, 2015. 东亚地区云微物理量分布特征的 CloudSat 卫星观测研究[J]. 大气科学, 39(2):235-248. Zhang H, Yang B Y, Peng J, et al, 2015. The characteristics of cloud microphysical properties in East Asia with the CloudSat dataset[J]. Chinese J Atmos Sci, 39(2):235-248.
赵姝慧, 2008. 利用 TRMM 卫星和 Cloudsat 卫星对不同类型云系的中微尺度结构的研究分析[D]. 南京:南京信息工程大学. Zhao S H, 2008. A study on the mesoscale and microscale structure in different types of clouds by TRMM satellite and Cloudsat satellite[D]. Nanjing:Nanjing University of Information Science and Technology.
郑永光, 陈炯, 朱佩君, 2008. 中国及周边地区夏季中尺度对流系统分布及其日变化特征[J]. 科学通报, 53(4):471-481. Zheng Y G, Chen J, Zhu P J, 2008. Distributions and daily variations of Mesoscale Convective Systems over China and its neighborhood in summer[J]. Chinese Sci Bull, 53(4):471-481.
中国气象局国家气象中心, 2006. 中国气象地理区划手册[M]. 北京:气象出版社. National Meteorological Center, 2006. China meteorological geographic division[M]. Beijing:China Meteorological Press.
钟水新, 王东海, 张人禾, 等, 2011. 基于CloudSat资料的冷涡对流云带垂直结构特征[J]. 应用气象学报, 22(3):257-264. Zhong S X, Wang D H, Zhang R H, et al, 2011. Vertical structure of convective cloud in a cold vortex over Northeastern China using CloudSat data[J]. J Appl Meteor Sci, 22(3):257-264.
朱乾根, 林锦瑞, 寿绍文, 1981. 天气学原理和方法[M]. 北京:气象出版社. Zhu Q G, Lin J R, Shou S W, 1981. Principles and methods of synoptic meteorology[M]. Beijing:China Meteorological Press.
[1] 薛小宁, 邓小波, 刘贵华. 基于卫星资料的青藏高原卷云特性研究[J]. 高原气象, 2018, 37(2): 505-513.
[2] 刘建军, 陈葆德. 基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J]. 高原气象, 2017, 36(3): 632-642.
[3] 王艺, 伯玥, 王澄海. 青藏高原中东部云量变化与气温的不对称升高[J]. 高原气象, 2016, 35(4): 908-919.
[4] 李浩然, 孙学金, 王旻燕, 卫克晶, 张日伟, 刘磊, 李岩, 周永波. 中国及周边地区白天各类云及其水凝物变化特征研究[J]. 高原气象, 2015, 34(6): 1625-1635.
[5] 潘晓, 傅云飞. 夏季青藏高原深厚及浅薄降水云气候特征分析[J]. 高原气象, 2015, 34(5): 1191-1203.
[6] 蔡淼, 周毓荃, 欧建军, 刘建朝, 蔡兆鑫. 三维云场分布诊断方法的研究[J]. 高原气象, 2015, 34(5): 1330-1344.
[7] 谭涌波, 梁忠武, 师正, 朱俊儒. 空间电荷分布特征对云闪传播行为的影响[J]. 高原气象, 2015, 34(5): 1502-1510.
[8] 叶培龙, 王天河, 尚可政, 吕巧谊, 王式功, 李景鑫. 基于卫星资料的中国西部地区云垂直结构分析[J]. 高原气象, 2014, 33(4): 977-987.
[9] 杨冰韵, 张华, 彭杰, 王志立, 荆现文. 利用CloudSat卫星资料分析云微物理和光学性质的分布特征[J]. , 2014, 33(4): 1105-1118.
[10] 王瑾-;刘黎平. CINRAD/CD雷达反射率因子同化对中尺度数值模式云微物理量场调整的分析[J]. 高原气象, 2009, 28(1): 173-185.
[11] 苏正军-;郑国光;酆大雄. 吸湿性物质催化云雨的研究进展[J]. 高原气象, 2009, 28(1): 227-232.
[12] 刁秀广, 杨晓霞, 朱君鉴, 王俊, 黄秀韶. 一次长寿命风暴的CINRAD/SA雷达反射率及中气旋产品特征与流场结构分析[J]. 高原气象, 2008, 27(3): 657-667.
[13] 姚叶青, 俞小鼎, 张义军, 程华, 魏鸣, 李劲. 一次典型飑线过程多普勒天气雷达资料分析[J]. 高原气象, 2008, 27(2): 373-381.
[14] 赵震, 雷恒池. 双参数云物理方案中谱形参数作用分析和数值模拟试验[J]. 高原气象, 2008, 27(1): 135-142.
[15] 陈勇航, 陈艳, 黄建平, 郑志海, 苏婧, 黄鹤. 中国西北地区云的分布及其变化趋势[J]. 高原气象, 2007, 26(4): 741-748.