Please wait a minute...
高级检索
高原气象  2017, Vol. 36 Issue (6): 1703-1712    DOI: 10.7522/j.issn.1000-0534.2016.000128
论文     
雷暴单体中降水退屏蔽作用和正地闪之间的关系
石海峰, 郭凤霞, 王昊亮, 陆干沂, 刘祖培, 鲍敏, 李雅雯
南京信息工程大学气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室, 江苏 南京 210044
Relationship between Precipitation Shielding and Positive Cloud-to-Ground Lightning Flashes in Thunderstorm Cell
SHI Haifeng, GUO Fengxia, WANG Haoliang, LU Ganyi, LIU Zupei, BAO Min, LI Yawen
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing 210044, Jiangsu, China
 全文: PDF(6940 KB)  
摘要: 为了验证雷暴单体中是否会由于降水退屏蔽作用导致正地闪的发生,建立了典型的雷暴云三极性电荷结构模型,利用现有的闪电放电参数化方案,通过改变中负和下正电荷区的高度和电荷密度进行的对比试验,对雷暴单体中降水退屏蔽作用和正地闪发生之间的关系进行研究。结果表明,在雷暴单体中发生降水时,引起的雷暴云中负和下正电荷区高度下降以及电荷密度的减小会使雷暴云中电场和电势的分布发生变化。当中负和下正电荷区的高度降低时,模拟域内最大电场强度降低,最大电场强度处电势增大,最大电场强度处和地面之间电势差增大,使正先导更容易发展到地面形成正地闪。当中负和下正电荷区的电荷密度减小时,模拟域内最大电场强度降低,最大电场强度处电势的绝对值先减小后增大,在电势增大过程中最大电场强度处和地面之间电势差增大,正先导也更容易发展到地面形成正地闪。因此,雷暴单体中降水退屏蔽作用对正地闪的发生是有利的。
关键词: 雷暴电荷结构降水正地闪    
Abstract: In order to understand if precipitation shielding can cause positive Cloud-to-ground (CG) lightning flashes in thunderstorm cell, a normal tripole charge structure model of thunderstorm, including lightning discharge parameterization, was established and used to study the relationship between precipitation shielding and positive CG lightning flashes in thunderstorm cell through changing altitudes and densities of middle negative and lower positive charge regions. The results indicate, when precipitation occurs in thunderstorm cell, the altitudes and charge densities of the middle negative and lower positive charge region will decrease, which will change the distribution of spatial electrical field and potential and then triggered lightning. When the altitudes of the middle negative and lower positive charge region decrease for the reason of downward flow caused by precipitation, the maximum electrical field strength will decrease and its correspond electrical potential will increase, thereby, the electrical potential difference between the point of the maximum electrical field and ground surface will increase, the positive leader is easier to reach the ground to form positive CG lightning flashes. And when the charge densities of the middle negative and lower positive charge region decrease for the reason of the electric charge adhere to precipitation fell out of the cloud, the maximum electrical field strength will decrease and its correspond absolute value of electrical potential will decrease first and then increase. During the absolute value of electrical potential is decreasing, which is negative and its orientation is vertical upward. It is of course impossible to produce a positive CG lightning flash. But when the densities of middle negative and lower positive charge region decrease to a certain degree, the value of the electrical potential will be positive and its orientation is vertical downward. Then the value of the electrical potential will keep increasing. The electrical potential difference between the point of the maximum electrical field and ground surface will increase too, the positive leader is easier to reach the ground to cause positive CG lightning flashes. So, the hypothesis that precipitation shielding can cause positive CG lightning flashes is reasonable in thunderstorm cell.
Key words: Thunderstorm    charge structure    precipitation    positive Cloud-to-ground lightning flashes
收稿日期: 2016-06-17 出版日期: 2017-12-20
ZTFLH:  P463.3  
基金资助: 国家自然科学基金项目(41275008);国家重点基础研究发展计划(973计划)项目(2014CB441403);公益性行业(气象)科研专项(GYHY201306069)
作者简介: 石海峰(1990),男,江苏宿迁人,硕士研究生,主要从事雷暴电学等方面的研究.E-mail:shihaifeng0504@126.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
石海峰
郭凤霞
王昊亮
陆干沂
刘祖培
鲍敏
李雅雯

引用本文:

石海峰, 郭凤霞, 王昊亮, 陆干沂, 刘祖培, 鲍敏, 李雅雯. 雷暴单体中降水退屏蔽作用和正地闪之间的关系[J]. 高原气象, 2017, 36(6): 1703-1712.

SHI Haifeng, GUO Fengxia, WANG Haoliang, LU Ganyi, LIU Zupei, BAO Min, LI Yawen. Relationship between Precipitation Shielding and Positive Cloud-to-Ground Lightning Flashes in Thunderstorm Cell. PLATEAU METEOROLOGY, 2017, 36(6): 1703-1712.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2016.000128        http://www.gyqx.ac.cn/CN/Y2017/V36/I6/1703

Berger K, Anderson R B, Kroninger H, 1975. Parameters of lightning flashes[J]. Cigre Electra, 41:23-37.
Branick M L, Doswell Ⅲ C A, 1992. An observation of the relationship between supercell structure and lightning ground-strike polarity[J]. Wea Forecasting, 7(1):143-149.
Brook M, Nakano M, Krehbiel P, et al, 1982. The electrical structure of the Hokuriku winter thunderstorms[J]. J Geophys Res, 87(C2):1207-1215.
Byers H R, Braham R R, 1949. The thunderstorm, report of the thunderstorm project[M]. Washington:US Government Printing Office.
Carey L D, Rutledge S A, Petersen W A, 2003a. The relationship between severe storm reports and cloud-to-ground lightning polarity in the contiguous United States from 1989 to 1998[J]. Mon Wea Rev, 131(7):1211-1228.
Carey L D, Petersen W A, Rutledge S A, et al, 2003b. Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998[J]. Mon Wea Rev, 131(8):1811-1831.
Curran E B, Rust W D, 1992. Positive ground flashes produced by low-precipitation thunderstorms in Oklahoma on 26 April 1984[J]. Mon Wea Rev, 120(4):544-553.
Gilmore M S, Wicker L J, 2002. Influences of the local environment onsupercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995[J]. Mon Wea Rev, 130(10):2349-2372.
Kasemir H W, 1960. A contribution to the electrostatic theory of a lightning discharge[J]. J Geophys Res, 65(7):1873-1878.
MacGorman D R, Rust W D, 1998. The electrical nature of storms[M]. New York:Oxford University Press.
MacGorman D R, Rust W D, Krehbiel P R, et al, 2005. The electrical structure of two supercell storms during STEPS[J]. Mon Wea Rev, 133(9):2583-2607.
Mansell E R, MacGorman D R, Ziegler C L, et al, 2002. Simulated three-dimensional branched lightning in a numerical thunderstorm model[J]. J Geophys Res, 107(D9):4075.
Martin A, Uman M A, 1987. The lightning discharge[M]. San Diego, California:Academic Press.
Moore C B,Vonnegut B, 1997. The thundercloud[M]//Golde R H ed. Lightning. Academic Press, 1:51-98.
Niemeyer L, Pietronero L, Wiesman H J, 1984. Fractal dimension of dielectric breakdown[J]. Phys Rev Lett, 52(12):1033-1036.
Qie X, Yu Y, Wang D, et al, 2002. Characteristics of cloud-to-ground lightning in Chinese inland plateau[J]. J Meteor Soc Japan, 80(4):745-754.
Rust W D, Marshall T C, 1996. On abandoning the thunderstorm tri-pole-chargeparadigm[J]. J Geophys Res, 101(D18):23499-23504.
Stolzenburg M, Rust W D, Smull B F, et al, 1998a. Electrical structure in thunderstorm convective regions:1. Mesoscale convective system[J]. J Geophys Res:Atmospheres (1984-2012), 103(D12):14059-14078.
Stolzenburg M, Rust W D, Smull B F, et al, 1998b. Electrical structure in thunderstorm convective regions:2. Isolated storms[J]. J Geophys Res:Atmospheres (1984-2012), 103(D12):14079-14096.
Stolzenburg M, Rust W D, Smull B F, et al, 1998c. Electrical structure in thunderstorm convective regions:3. Synthesis[J]. J Geophys Res:Atmospheres (1984-2012), 103(D12):14097-14108.
Suzuki T, 1992. Long term observation of winter lightning on Japan Sea coast[J]. Res Lett Atmos Electr, 12:53-56.
Takahashi T, 2012. Precipitation particle charge distribution and evolution of East Asianrainbands[J]. Atmos Res, 118:304-323.
Takahashi, 1983. Electric structure of oceanic tropical clouds and charge separation processes[J]. J Meteor Soc Japan, 61:656-669.
Wiens K C, Rutledge S A, Tessendorf S A, 2005. The 29 June 2000 supercell observedduring STEPS. Part ii:lightning and charge structure[J]. J Atmos Sci, 62:4151-4177.
Williams E R, 1989. Thetripole structure of thunderstorms[J]. J Geophys Res, 94(D11):13151-13167.
Williams E R, 2001. The electrification of severestorms[M]//Severe Convective Storms. American Meteorological Society, 527-561.
冯桂力, 郄秀书, 袁铁, 等, 2007. 雹暴的闪电活动特征与降水结构研究[J]. 中国科学(地球科学), 37(1):123-132. Feng G L, Qie X S, Y T, et al, 2007. Study on the characteristics of lightning activity and precipitation structure of hail thunderstorm[J]. Science China Earth Sciences, 37(1):123-132.
郭凤霞, 张义军, 言穆弘, 等, 2007. 青藏高原雷暴云降水与地面电场的观测和数值模拟[J]. 高原气象, 26(2):257-263. Guo F X, Zhang Y J, Yan M H, et al, 2007. Numerical study and observation of the relationship between surface electric field and precipitation in thunderstorm over Qinghai-Xizang Plateau[J]. Plateau Meteor, 26(2):257-263.
郭凤霞, 陆干沂, 吴鑫, 等, 2016. 强雷暴中正地闪发生的条件[J]. 中国科学(地球科学), 46(5):730-742. Guo F X, Lu G Y, Wu X, et al, 2016. The condition of occurrence of positive CG lightning in strong thunderstoms[J]. Science China Earth Sciences, 46(5):730-742.
粱梦雪, 郭凤霞, 吴鑫, 等, 2016. 冰相粒子的相对增长对非感应起电影响的模拟研究[J]. 高原气象, 35(2):538-547. Liang M X, Guo F X, Wu X, et al, 2016. Numerical simulation of influence of relative growth of ice and graupel on noninductive electrification[J]. Plateau Meteor, 35(2):538-547. DOI:10. 7522/j. issn. 1000-0534. 2015. 00013.
郄秀书, 余晔, 王怀斌, 等, 2010. 中国内陆高原地闪特征的统计分析[J]. 高原气象, 20(4):395-401. Qie X S, Yu Y, Wang H B, et al, 2010. Analyese on some features of ground flashes in Chinese inland plateau[J]. Plateau Meteor, 20(4):395-401.
谭涌波, 梁忠武, 师正, 等, 2015. 空间电荷分布特征对云闪传播行为的影响[J]. 髙原气象, 34(5):1502-1510. Tan Y B, Liang Z W, Shi Z, et al, 2015. Effect of distribution characteristic of space charge on propagation behavior of intra-cloud lightning discharge[J]. Plateau Meteor. 34(5):1502-1510. DOI:10. 7522/j. issn. 1000-0534. 2014. 00064.
王昊亮, 2014. 雷暴云放电特征的三维数值模拟研究[D]. 南京:南京信息工程大学, 1-62. Wang H L, 2014. Numerical simulation of electrical activity in thunderstorms[D]. Nanjing:Nanjing University of Information Science and Technology, 1-62.
张义军, 言穆弘, 张翠华, 等, 2003. 甘肃平凉地区正地闪特征分析[J]. 高原气象, 22(3):295-300. Zhang Y J, Yan M H, Zhang C H, et al, 2003. Analysis on characteristics of positive cloud-to-ground in Pingliang area of Gansu[J]. Plateau Meteor, 22(3):295-300.
张义军, 孟青, Krehbiel P R, 等, 2004. 超级单体雷暴中闪电VHF辐射源的时空分布特征[J]. 科学通报, 49(5):499-505. Zhang Y J, Meng Q, Krehbiel P R, et al, 2004. The temporal and spatial distribution of lightning VHF radiation source in super cell thunderstorms[J]. Chinese Sci Bull, 49(5):499-505.
张义军, 孟青, Krehbiel P R, 等, 2006. 正地闪发展的时空结构特征与闪电双向先导[J]. 中国科学(地球科学), 36(1):98-108. Zhang Y J, Meng Q, Krehbiel P R, et al, 2006. Characteristic of temporal and spatial structure of positive CG lightning and bi-directional leaders of flashes[J]. Science China Earth Sciences, 36(1):98-108.
张义军, 徐良韬, 郑栋, 等, 2014. 强风暴中反极性电荷结构研究进展[J]. 应用气象学报, 25(5):513-526. Zhang Y J, Xu L T, Zheng D, et al, 2014. Review on inverted charge structure of severe storms[J]. J Appl Meteor Sci, 25(5):513-526.
[1] 赵亚芳, 张宁, 陈燕, 朱焱. 环太湖地表城市热岛长期遥感资料分析[J]. 高原气象, 2017, 36(5): 1394-1403.
[2] 朱焱, 刘红年, 沈建, 季嬿. 苏州城市热岛对污染扩散的影响[J]. 高原气象, 2016, 35(6): 1584-1594.
[3] 李明财, 郭军, 史珺, 熊明明. 气候变化对天津市商场和居住建筑极端能耗的影响[J]. 高原气象, 2014, 33(2): 574-583.
[4] 王正兴;江玉华-;李炬;刘伟东;王强. 在北京气象铁塔上测量城市边界层辐射的研究[J]. 高原气象, 2009, 28(1): 20-27.
[5] 李书严, 陈洪滨, 李伟. 城市化对北京地区气候的影响[J]. 高原气象, 2008, 27(5): 1102-1110.
[6] 方锋, 白虎志, 赵红岩, 杨苏华. 中国西北地区城市化效应及其在增暖中的贡献率[J]. 高原气象, 2007, 26(3): 579-585.
[7] 李卓仑, 王乃昂, 轧靖, 刘陶, 智萌. 近40年兰州城市气候季节性变化与城市发展[J]. 高原气象, 2007, 26(3): 586-592.
[8] 何晓凤, 蒋维楣, 郭文利, 王晓云. 城镇规划布局对边界层结构影响的数值试验[J]. 高原气象, 2007, 26(2): 363-372.
[9] 苗世光, 王晓云, 蒋维楣, 奚文, 季崇萍, 刘凤辉, 陈鲜艳. 城市小区规划对大气环境影响的评估研究[J]. 高原气象, 2007, 26(1): 92-97.
[10] 朱家其, 汤绪, 江灏. 上海市城区气温变化及城市热岛[J]. 高原气象, 2006, 25(6): 1154-1160.
[11] 陈燕, 蒋维楣. 城市建筑物对边界层结构影响的数值试验研究[J]. 高原气象, 2006, 25(5): 824-833.
[12] 陈燕, 蒋维楣, 吴涧, 顾骏强, 徐集云. 利用区域边界层模式对杭州市热岛的模拟研究[J]. 高原气象, 2004, 23(4): 519-528.
[13] 吕萍, 袁九毅, 张文煜. 城市街谷几何结构对街谷内流场及污染物浓度场影响的数值模拟[J]. 高原气象, 2004, 23(4): 534-539.
[14] 何云玲, 张一平. 城市生态环境与绿化植被相互作用研究[J]. 高原气象, 2004, 23(3): 297-304.
[15] 张一平, 何云玲, 马友鑫, 刘玉洪, 李佑荣, 窦军霞, 郭萍. 昆明城市热岛效应立体分布特征[J]. 高原气象, 2002, 21(6): 604-609.