Please wait a minute...
高级检索
高原气象  2017, Vol. 36 Issue (6): 1713-1721    DOI: 10.7522/j.issn.1000-0534.2017.00013
论文     
太阳能资源典型年挑选方法的适用性对比研究
常蕊1, 申彦波2,3, 郭鹏2,3
1. 国家气候中心, 北京 100081;
2. 中国气象局公共气象服务中心, 北京 100081;
3. 中国气象局风能太阳能资源中心, 北京 100081
Comparative Analysis on the Applicability of Different Typical Year Generating Methods in Solar Energy Resource Assessment
CHANG Rui1, SHEN Yanbo2,3, GUO Peng2,3
1. National Climate Center of China Meteorological Administration, Beijing 100081, China;
2. Public Meteorological Service Center of China Meteorological Administration, Beijing 100081, China;
3. Wind and Solar Energy Resources Center of China Meteorological Administration, Beijing 100081, China
 全文: PDF(5163 KB)  
摘要: 以中国现有辐射观测资料为基础,综合利用近30年(1985-2014年)的风速、气温、湿度和露点温度等资料,通过综合气象条件相似分析技术,构建了太阳能资源评估典型年挑选方法——Sandia法。以我国9个代表观测站为例,重点对比分析了Sandia法、正态拟合法和频率最大法在典型年挑选方面的适用特点。结果发现:(1) Sandia法和正态拟合法挑选的典型年水平面年总辐射曝辐量接近,而频率最大法的挑选结果则偏离较大;(2) Sandia法和正态拟合法挑选的典型月辐射曝辐量之间的差值存在较明显的波动,且这种波动与天气复杂程度有关;(3) Sandia法对典型大气环境具有较好的代表性,但在应用中需要大量气象观测数据的支撑;(4)正态拟合法仅需要引入太阳辐射曝辐量的观测值,便于快速有效地应用,但所选典型年缺少气候代表性。此结果可为太阳能资源的科学评估提供依据,也在光伏电站及其他太阳能相关工程的最优设计和后评估中具有较好的应用价值。
关键词: 太阳能资源评估典型年对比研究逐日气象资料    
Abstract: Solar energy development and utilization plays an important role in haze governance and fulfilling the reduction commitments in advance. In order to make accurately optimal design and performance evaluation of the solar energy conversion systems, typical meteorological year (TMY) data are needed. A TMY is a data set of daily values of solar radiation and meteorological elements for a 1-year period in this paper. It consists of months selected from individual years and concatenated to form a complete year. In this paper, the Finkelstein-Schafer statistical method, which was initially developed by Sandia national laboratories, is firstly applied by analyzing a 30-year period (1985-2014) daily measured datasets which include global solar radiation, wind speed, relative humidity, air temperature, pressure and dew temperature (an intermediate variable) in order to generate typical meteorological year (TMY) for nine representative meteorological stations in China. Therefore, the TMY data sets obtained here represent conditions judged to be typical over a long period of time (30 years). Meanwhile, the annual global horizontal irradiations (GHI) are also calculated by the normal distribution method and the max probability density method, which are the widely used in the engineering practice. Then, the emphasis is placed on the comparison between Sandia method, the normal distribution method and the max probability density method. It is found that:(1) annual global horizontal irradiations (GHI) calculated from Sandia and normal distribution methods matched well with each other, and it showed a significant deviation in GHI calculated from the max probability density method; (2) despite of the similar annual GHI, significant variations exist in the monthly GHI difference between Sandia and normal distribution methods which was supposed to be connect with the complexity of the local weather conditions; (3) the Sandia method is of the good representative of the typical atmospheric conditions but requires a lot of meteorological observations during the calculation process; (4) the normal distribution method is suitable for quick and effective application since only solar radiation observation is required during the calculation, but it is lack of representative of the local climatic conditions. It is worth noting that because the TMY dataset represents typical case rather than extreme conditions, it is not suited for designing systems and its components to meet the worst condition occurring at a local area. These findings in this paper will be very useful for the performance evaluation of solar energy conversion systems, heating, ventilation and other solar energy dependent systems.
Key words: Solar energy resource assessment    typical meteorological year    comparative study    daily meteorological data
收稿日期: 2016-07-19 出版日期: 2017-12-20
ZTFLH:  P49  
基金资助: 公益性行业(气象)科研专项(GYHY201306048);国家自然科学基金项目(41405038,41605086)
作者简介: 常蕊(1982),女,陕西西安人,高级工程师,主要从事风能太阳能资源评估及预报技术研究.E-mail:changrui@cma.gov.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
常蕊
申彦波
郭鹏

引用本文:

常蕊, 申彦波, 郭鹏. 太阳能资源典型年挑选方法的适用性对比研究[J]. 高原气象, 2017, 36(6): 1713-1721.

CHANG Rui, SHEN Yanbo, GUO Peng. Comparative Analysis on the Applicability of Different Typical Year Generating Methods in Solar Energy Resource Assessment. PLATEAU METEOROLOGY, 2017, 36(6): 1713-1721.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00013        http://www.gyqx.ac.cn/CN/Y2017/V36/I6/1713

Crawley D B, 1998. Which weather data should you use for energy simulations of commercial buildings?[J]. ASHRAE Trans, 104:498-515.
Festa R, Ratto C F, 1993. Proposal of a numerical procedure to select reference years[J]. Sol Energy, 50:9-17.
Feuermann D, Gordon J M, Zarmi Y, 1985. A typical meteorological day "TMY" approach for predicting the long-term performance of solar energy systems[J]. J Sol Energy, 35:499-507.
Hall I, Prairie R, Anderson H, et al, 1978. Generation of typical meteorological years for 26 SOLMET stations[R]. SAND78-1601. Albuquerque, NM:Sandia National Laboratories.
Janjai S, Deeyai P, 2009. Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment[J]. Appl Energy, 86:528-537.
Lam J C, Hui S C M, Chan A L S, 1996. A statistical approach to the development of a typical meteorological year for Hong Kong[J]. Architect Sci Rev, 39:201-219.
Marion W, Urban K, 1995. User's manual for TMY2s-typical meteorological years derived from the 1961-1990 national solar radiation data base[M]. Golden, CO:National Renewable Energy Laboratory, 1-55.
Pissimanis D, Karras G, Notaridou V, et al, 1988. The generation of a "typical Meteorological Year" for the city of Athens[J]. J Sol Energy, 40:405-411.
Wilox S, Marion W, 2008. User's manual for TMY3 data sets[R]. NREL Report No. TP-581-41356, 50.
Wilox S, 2007. National solar radiation database 1991-2005 update:User's Manual[R]. NREL Report No. TP-581-41364, 472.
白建波, 曹阳, 郝玉哲, 等, 2014. 光伏并网电站仿真与决策优化软件设计[J]. 太阳能能学报, 34(10):2022-2029. Bai J B, Cao Y, Hao Y Z, et al, 2014. Development of simulation and decision-makings of software of solar PV grid-connected power system[J]. Acta Energiae Solaris Sinica, 34(10):2022-2029.
谷晓平, 袁淑杰, 史岚, 等, 2009. 基于DEM的复杂地形下太阳散散射辐射分布式模式——以贵州高原为例[J]. 高原气象, 28(1):143-150. Gu X P, Yuan S J, Shi L, et al, 2009. Study on distributed simulation of diffuse solar radiation over complex terrains based on DEM-taking Guizhou Plateau for example[J]. Plateau Meteor, 28(1):143-150.
顾骏强, 杨军, 陈海燕, 等, 2008. 建筑能耗动态模拟气象资料的开发与应用[J]. 太阳能学报, 29(1):119-124. Gu J Q, Yang J, Chen H Y, et al, 2008. Development and application of meteorological data on dynamically modeling of energy consumption in dwelling buildings[J]. Acta Energlae Solaris Sinca, 29(1):119-124.
李红莲, 杨柳, 刘大龙, 等, 2015. 建筑能耗模拟用典型气象年产生方法的研究[J]. 西安建筑科技大学学报(自然科学版), 47(2):267-271. Li H L, Yang L, Liu D L, et al, 2015. Research on the method of generate TMY for building energy consumption simulation[J]. J Xi'an Univ of Arch & Tech (Natural Science Edition), 47(2):267-271.
李昀英, 宇如聪, 徐幼平, 等, 2003. 中国南方地区层状云的形成和日变化特征分析[J]. 气象学报, 61(6):733-743. Li Y Y, Yu R C, Xu Y P, et al, 2003. The formation and diurnal changes of stratiform clouds in southern China[J]. Acta Meteor Sinica, 61(6):733-743.
刘可群, 陈正洪, 夏智宏, 2007. 湖北省太阳能资源时空分布特征及区划研究[J]. 华中农业大学学报, 26(6):888-893. Liu K Q, Chen Z H, Xia Z H, 2007. The characteristic analysis and division research of solar energy resource in Hubei province[J], Journal of Huazhong Agricultural University, 26(6):888-893.
申彦波, 常蕊, 杜江, 等, 2015. 吐鲁番地区可利用太阳能资源分析[J]. 高原气象, 34(2):470-477. Shen Y B, Chang R, Du J, et al, 2015. Analysis of the available solar energy resources in Turpan[J], Plateau Meteor, 36(9):111-115.
申彦波, 王香云, 王婷, 等, 2016. 中国典型地区水平总辐射辐照度频次特征[J]. 风能(8):70-76. Shen Y B, Wang X Y, Wang T, et al, 2016. Frequency characteristics of the global horizontal irradiation in typical cities over China[J]. Wind Energy (8):70-76.
申彦波, 2010. 近20年卫星遥感资料在我国太阳能资源评估中的应用综述[J]. 气象, 36(9):111-115. Shen Y B, 2010. Review of applications of satellite remote sensing data to solar energy resources assessment in China in recent 20 years[J]. Meteor Mon, 36(9):111-115.
王炳忠, 张富国, 李立贤, 1980. 我国的太阳能资源及其计算[J]. 太阳能学报, 1(1):1-9. Wang B Z, Zhang F G, Li L X, 1980. Solar energy resources in China[J]. Acta Energy Solaris Sinica, 1(1):1-9.
辛渝, 赵逸舟, 毛炜峄, 等, 2011. 新疆太阳总辐射资料的均一性检验与气候学估算式的再探讨[J]. 高原气象, 30(4):878-889. Xin Y, Zhao Y Z, Mao W Y, et al, Homogeneity test of the total solar radiation data series and further research on climatological calculation over Xinjiang[J], Plateau Meteor, 30(4):878-889.
杨柳, 李昌华, 刘加平, 2006. 典型气象年生成方法及原始气象数据质量分析[J]. 气象科技, 34(5):596-599. Yang L, Li C H, Liu J P, 2006. Generating method of typical meteorological years and quality analysis of raw meteorological data[J]. Meteor Sci Technol, 34(5):596-599.
郑有飞, 尹炤寅, 吴荣军, 等, 2012. 1960-2005年京津冀地区地表太阳辐射变化及成因分析[J]. 高原气象, 31(2):436-445. Zheng Y F, Yin S Y, Wu R J, et al, 2012. Analyses on variation and cause of surface solar radiation in Beijing, Tianjin and Hebei region from 1960 to 2005[J]. Plateau Meteor, 31(2):436-445.
周扬, 吴文祥, 胡莹, 等, 2010. 西北地区太阳能资源空间分布特征及资源潜力评估[J]. 自然资源学报, 2010, 25(10):1739-1749. Zhou Y, Wu W X, Hu Y, et al, 2010. The temporal-spatial distribution and evaluation of potential solar energy resources in northwest China[J]. Journal of Natural Resources, 25(10):1739-1749.
朱飙, 李春华, 方锋, 2010. 甘肃省太阳能资源评估[J]. 干旱气象, 28(2):218-221. Zhu B, Li C H, Fang F, 2010. Solar energy resource assessment in Gansu province[J]. J Arid Meteor, 28(2):218-221.
[1] 张雅斌, 黄蕾, 毛冬艳, 杨睿. 关中盛夏强湿雷暴环境条件与云微物理特征[J]. 高原气象, 2018, 37(1): 167-184.
[2] 刘姝岩, 包云轩, 金建平, 刘诚, 许建明, 李建民, 黄建平. 重霾天气气溶胶辐射效应对近地面臭氧峰值的影响[J]. 高原气象, 2018, 37(1): 296-304.
[3] 石岚, 徐丽娜, 郝玉珠. 多模式风速融合预报应用研究[J]. 高原气象, 2017, 36(4): 1022-1028.
[4] 张双益, 胡非. 大气边界层与风力发电的相互作用研究综述[J]. 高原气象, 2017, 36(4): 1127-1137.
[5] 赖欣, 文军, 范广洲, 宋海清, 张永莉, 朱丽华, 王炳赟. 基于陆面数据同化系统改进中国区域土壤湿度的模拟研究[J]. 高原气象, 2017, 36(3): 776-787.
[6] 王越亚, 邵爱梅. SVD-En3DVar同化方法在一次飑线过程中的应用[J]. 高原气象, 2016, 35(3): 755-766.
[7] 尹继福, 郑有飞, 詹习武, 吴荣军, 刘吉成, 方莉, 关福来, 姚树然. 同化极轨卫星陆地产品对改善陆面模式模拟能力研究进展[J]. 高原气象, 2016, 35(1): 260-276.
[8] 李虎超, 邵爱梅, 何邓新, 王越亚. BP神经网络在估算模式非系统性预报误差中的应用[J]. 高原气象, 2015, 34(6): 1751-1757.
[9] 申彦波, 常蕊, 杜江, 程兴宏. 吐鲁番地区可利用太阳能资源分析[J]. , 2015, 34(2): 470-477.
[10] 王宝, 解福燕, 张自祥, 刘春学. 玉溪空气负氧离子预测模型的建立[J]. 高原气象, 2015, 34(1): 251-257.
[11] 辛渝, 陈洪武. XJRUC/CALMET及CALMET不同参数调整对达坂城—小草湖区风场预报影响[J]. , 2014, 33(6): 1674-1686.
[12] 李红英, 张晓煜, 王静, 郑广芬, 王素艳. 基于CI指数的宁夏干旱致灾因子特征指标分析[J]. , 2014, 33(4): 995-1001.
[13] 何邓新, 邵爱梅. 判断大气要素场相似度的相似面积比方法[J]. 高原气象, 2014, 33(3): 658-665.
[14] 李子良, 黄仪方. 重力惯性波及其不稳定——急流附近飞机颠簸产生的可能机制[J]. 高原气象, 2008, 27(4): 859-865.