Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (1): 13-27    DOI: 10.7522/j.issn.1000-0534.2017.00034
论文     
青藏高原新增探空资料同化对南疆夏季降水预报的影响
于晓晶1, 杜娟1, 王敏仲1, 徐洪雄2, 何清1
1. 中国气象局乌鲁木齐沙漠气象研究所/中亚大气科学研究中心, 新疆 乌鲁木齐 830002;
2. 中国气象科学研究院, 北京 100081
Impact of Assimilating the New Radiosonde Data on Qinghai-Tibetan Plateau on Summer Rainfall Forecast over Southern Xinjiang
YU Xiaojing1, DU Juan1, WANG Minzhong1, XU Hongxiong2, HE Qing1
1. Institute of Desert Meteorology, China Meteorological Administration/Center for Central Asian Atmosphere Science Research, Urumqi 830002, Xinjiang, China;
2. Chinese Academy of Meteorological Sciences, Beijing 100081, China
 全文: PDF(49730 KB)  
摘要: 利用第三次青藏高原大气科学试验中青藏高原西部新增3个探空站(狮泉河、申扎、改则)的探空资料,基于中尺度数值(WRF)模式和GSI同化系统,选取2015年夏季南疆两次不同类型(南亚高压双体型和单体型)的强降水过程进行同化敏感试验,以初步评估新增3个站探空资料同化对南疆夏季降水预报的影响。从初始场物理量的增量场来看,同化高原3个站探空资料对两次过程的初始场均有一定改进,对南亚双体型过程的改进较显著,这可能与其偏南气流及上下游效应较强有关。中、高层物理量的增量中心均出现在高原中、西部,分别对应申扎和狮泉河两站,并向周边地区逐渐减小,南疆地区表现为弱的正或负增量。虽然高原探空资料均在600 hPa以上,通过动力调整对低层物理量也有一定影响。同化后低层的散度和湿度增量中心出现在高原西南侧,南疆地区变化较小。随着模式时间积分,各高度上的物理量和降水影响系统调整效果逐渐显著,总体使得200 hPa副热带长波槽有所加深、南疆上空的偏南急流得到加强,500 hPa低值系统强度有所减弱,850 hPa的散度和湿度在南疆地区均有显著调整,但低层散度和湿度在南疆西部强降水中心调整相对较小。从降水预报结果来看,同化高原3个站探空资料后,对两次过程的小量级降水评分显著提高,即对降水落区预报能力有所提高;但对强降水中心结果影响不大,即对局地性强降水的预报能力仍有所欠缺。
关键词: 第三次青藏高原大气科学试验新增探空资料GSI同化系统南疆夏季降水    
Abstract: Using the radiosonde data of the three newly-built stations (Shiquanhe, Shenzha and Gaize) on the Qinghai-Tibetan Plateau (QTP) in the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX), employing the Weather Research and Forecasting (WRF) model and the Gridpoint Statistical Interpolation (GSI) system, two summer rainfall processes occurred in Southern Xinjiang in 2015, in the background of double-body (Process Ⅰ) and one-body (Process Ⅱ) of the South Asia High (SAH), respectively, were selected to conduct the data assimilation sensitive experiments, in order to assess the impacts of assimilating the new radiosonde data on the QTP upon summer rainfall forecasts over Southern Xinjiang preliminary. In the terms of the analysis increments, the initial fields of the two processes were improved after assimilating the new radiosonde data, and the Process Ⅱ was more significant, which might be related to stronger southerly airflow and the effect of upper and lower courses. The centers of increment on the high and middle levels occurred in the middle and west of the QTP, corresponding to the Shenzha and Shiquanhe, respectively. Then the increments decreased to the surrounding regions, and showed weak positive or negative increments over the Southern Xinjiang. Although the new radiosonde data on the QTP are above 600 hPa, the meteorological fields in the low levels were also affected through dynamic readjustment. The increment centers of the divergence and humidity presented in the southwest of the QTP, while it changed little over the Southern Xinjiang. The adjustments of the meteorological fields and main effect systems became remarkable gradually with the model integrating. As a result, the subtropical long wave trough got deepened, the south jet over the Southern Xinjiang strengthened, the low pressure systems on the 500 hPa weakened, and the divergence and humidity changed obviously over the Southen Xinjiang. However, over the precipitation centers in the west of the Southen Xinjiang, the divergence and humidity varied little relatively. The precipitation forecasts showed that the Threat Score of the small thresholds increased remarkably, which meant the forecast capacity of the rainfall area were improved to some extent. Moreover, the result of heavy rainfall were affected little, which also agreed with the variation of the meteorological fields.
Key words: The third TIPEX    new radiosonde data    Gridpoint Statistical Interpolation (GSI) System    summer rainfall in Southern Xinjiang
收稿日期: 2017-01-19 出版日期: 2018-02-20
ZTFLH:  P435  
基金资助: 公益性行业(气象)科研专项(GYHY201406001);国家自然科学基金项目(41575008);新疆气象局科研课题(MS201706)
通讯作者: 杜娟.E-mail:dujuan_1213@163.com     E-mail: dujuan_1213@163.com
作者简介: 于晓晶(1987-),女,山东海阳人,助理研究员,主要从事数值模拟与资料同化方面研究.E-mail:yxj1301@126.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
于晓晶
杜娟
王敏仲
徐洪雄
何清

引用本文:

于晓晶, 杜娟, 王敏仲, 徐洪雄, 何清. 青藏高原新增探空资料同化对南疆夏季降水预报的影响[J]. 高原气象, 2018, 37(1): 13-27.

YU Xiaojing, DU Juan, WANG Minzhong, XU Hongxiong, HE Qing. Impact of Assimilating the New Radiosonde Data on Qinghai-Tibetan Plateau on Summer Rainfall Forecast over Southern Xinjiang. PLATEAU METEOROLOGY, 2018, 37(1): 13-27.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00034        http://www.gyqx.ac.cn/CN/Y2018/V37/I1/13

Barker D M, Huang W, Guo Y R, et al, 2004. A three-dimensional variational data assimilation system for MM5:Implementation and initial results[J]. Mon Wea Rev, 132:897-914.
Benjamin S G, Devenyi D, Weygandt S S, et al, 2004. An hourly assimilation/forecast cycle:The RUC[J]. Mon Wea Rev, 132:495-518.
Kleist D T, Parrish D F, Derber J C, et al, 2009. Introduction of the GSI into the NCEP global data assimilation system[J]. Wea Forecasting, 24:1691-1705.
Xu J, Rugg S, Byerle L, et al, 2009. Weather Forecasts by the WRF-ARW Model with the GSI Data Assimilation System in the Complex Terrain Areas of Southwest Asia[J]. Wea Forecasting, 24:987-1008.
白彬人, 胡泽勇, 2016. 高原热力作用对高原季风爆发的指示意义[J]. 高原气象, 35(2):329-336. Bai B R, Hu Z Y, 2016. Indicative significance of thermal effects over the Qinghai-Xizang Plateau to the onset of plateau summer monsoon[J]. Plateau Meteor, 35(2):329-336. DOI:10. 7522/j. issn. 1000-0534. 2015. 00016.
杜娟, 于晓晶, 辛渝, 等, 2016. 乌鲁木齐区域数值预报业务系统降水预报检验与评估分析[J]. 沙漠绿洲气象, 10(6):31-40. Du J, Yu X J, Xin Y, et al, 2016. Evaluation and analysis of precipitation predictability of desert oasis Gobi regional assimilation and forecast system[J]. Desert Oasis Meteor, 10(6):31-40.
段华, 潘晓滨, 臧增良, 等, 2015. 基于GSI同化系统的卫星辐射率资料的同化试验[J]. 干旱气象, 33(6):895-901. Duan H, Pan X B, Zang Z L, et al, 2015. Analysis on assimilation experiment of AMSU-A radiance based on GSI system[J]. J Arid Meteor, 33(6):895-901.
郝民, 郭英华, 马再忠, 2010. 一次降水天气过程的GPS掩星资料在GSI同化系统中的应用[J]. 高原气象, 29(1):164-174. Hao M, Guo Y H, Ma Z Z, 2010. Application and experiment of GPS radio occultation data in the NCEP GSI system in a precipitation process[J]. Plateau Meteor, 29(1):164-174.
郝民, 田伟红, 龚建东, 2014. L波段秒级探空资料在GRAPES同化系统中的应用研究[J]. 气象, 40(2):158-165. Hao M, Tian W H, Gong J D, 2014. Study of L-band second-level radiosonde data applied in GRAPES assimilation system[J]. Meteor Mon, 40(2):158-165.
黄艳, 刘涛, 张云惠, 2012. 2010年盛夏南疆西部一次区域性暴雨天气特征[J]. 干旱气象, 30(4):615-622. Huang Y, Liu T, Zhang Y H, 2012. Features of a regional rainstorm in midsummer of 2010 in Western Xinjiang[J]. J Arid Meteor, 30(4):615-622.
黄燕燕, 万齐林, 陈子通, 等, 2011. 加密探空资料在华南暴雨数值预报的应用试验[J]. 热带气象学报, 27(2):179-188. Huang Y Y, Wan Q L, Chen Z T, et al, 2011. Experiments of using dense observation data of sounding balloon in rainstorm forecast over South China[J]. J Trop Meteor, 27(2):179-188.
李永华, 卢楚翰, 徐海明, 等, 2011. 夏季青藏高原大气热源与西南地区东部旱涝的关系[J]. 大气科学, 35(3):422-434. Li Y H, Lu C H, Xu H M, et al, 2011. Contemporaneous relationships between summer atmospheric heat source over the Tibetan Plateau and drought/flood in eastern Southwest China[J]. Chinese J Atmos Sci, 35(3):422-434.
刘晓璐, 刘建西, 张世林, 等, 2014. 基于探空资料因子组合分析方法的冰雹预报[J]. 应用气象学报, 25(2):168-175. Liu X L, Liu J X, Zhang S L, et al, 2014. Hail forecast based on factor combination analysis mothod and sounding data[J]. J Appl Meteor Sci, 25(2):168-175.
刘芸芸, 何金海, 王谦谦, 2006. 新疆地区夏季降水异常的时空特征及环流分析[J]. 南京气象学院学报, 29(1):24-32. Liu Y Y, He J H, Wang Q Q, 2006. Analysis of temporal spatial features and circulation characteristics of summer precipitation in Xinjiang[J]. Journal of Nanjing Institute of Meteorology, 29(1):24-32.
莫毅, 潘晓滨, 臧增亮, 等, 2008. 资料同化对一次华南暴雨影响的数值试验研究[J]. 暴雨灾害, 27(4):289-294. Mo Y, Pan X B, Zang Z L, et al, 2008. Effect of data assimilation on a numerical simulation of a heavy rain in South China[J]. Torrential Rain Disaster, 27(4):289-294.
齐玉磊, 冯松, 黄建平, 等, 2015. 高原夏季风对中东亚干旱半干旱区夏季降水的影响[J]. 高原气象, 34(6):1566-1574. Qi Y L, Feng S, Huang J P, et al, 2015. Influence of Plateau summer monsoon on summer precipitation in the arid and semi-arid regions of the Central and East Asia[J]. Plateau Meteor, 34(6):1566-1574. DOI:10. 7522/j. issn. 1000-0534. 2014. 00088.
史玉光, 孙照渤, 2008. 新疆水汽输送的气候特征及其变化[J]. 高原气象, 27(2):310-319. Shi Y G, Sun Z B, 2008. Climate characteristics of water vapor transportation and its variation over Xinjiang[J]. Plateau Meteor, 27(2):310-319.
王前, 赵勇, 陈飞, 等, 2017. 南亚高压的多模态特征及其与新疆夏季降水的联系[J]. 高原气象, 36(5):1209-1220. Wang Q, Zhao Y, Chen F, et al, 2017. Characteristics of different patterns of South Asia high and their relationships with summer precipitation in Xinjiang[J]. Plateau Meteor, 36(5):1209-1220. DOI:10. 7522/j. issn. 1000-0534. 2016. 00123.
魏东, 孙继松, 雷蕾, 等, 2011. 三种探空资料在各类强对流天气中的应用对比分析[J]. 气象, 37(4):412-422. Wei D, Sun J S, Lei L, et al, 2011. Comparative analysis of three kinds of sounding data in the application of the severe convective weather[J]. Meteor Mon, 37(4):412-422.
韦芬芬, 汤剑平, 王淑瑜, 2015. 中国区域夏季再分析资料高空变量可信度的检验[J]. 地球物理学报, 58(2):383-397. Wei F F, Tang J P, Wang S Y, 2015. A reliability assessment of upper level reanalysis datasets over China[J]. Chinese J Geophys, 58(2):383-397. DOI:10. 6038/cjg20150204.
许东蓓, 许爱华, 肖玮, 等, 2015. 中国西北四省区强对流天气形势配置及特殊性综合分析[J]. 高原气象, 34(4):973-981. Xu D B, Xu A H, Xiao W, et al, 2015. Comprehensive analysis on the severe convective weather situation configuration and its particularity in Norewest China[J]. Plateau Meteor, 34(4):973-981. DOI:10. 7522/j. issn. 1000-0534. 2014. 00102.
徐祥德, 陶诗言, 王继志, 等, 2002. 青藏高原-季风水汽输送"大三角扇形"影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 60(3):257-267. Xu X D, Tao S Y, Wang J Z, et al, 2002. The relationship between water vapor transport features of Tibetan Plateau-monsoon "large triangle" affecting region and drought-flood abnormality of China[J]. Acta Meteor Sinica, 60(3):257-267.
徐祥德, 陈联寿, 2006. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 17(6):756-772. Xu X D, Chen L S, 2006. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. J Appl Meteor Sci, 17(6):756-772.
徐祥德, 赵天良, 施晓晖, 等, 2015. 青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J]. 气象学报, 73(1):20-35. Xu X D, Zhao T L, Shi X H, et al, 2015. A study of the role of the Tibetan Plateau's thermal forcing in modulating rainband and moisture transport in eastern China[J]. Acta Meteor Sinica, 73(1):20-35.
杨莲梅, 张庆云, 2007. 南疆夏季降水异常的环流和青藏高原地表潜热通量特征分析[J]. 高原气象, 26(3):435-441. Yang L M, Zhang Q Y, 2007. Surface latent heat flux characteristics over Tibetan Plateau and circulations of summer precipitation anomalies in South Xinjiang[J]. Plateau Meteor, 26(3):435-441.
姚爽, 陈敏, 王建捷, 2015. L波段分钟数据在WRF模式中的变分同化应用试验[J]. 气象, 41(6):695-706. Yao S, Chen M, Wang J J, 2015. Variational assimilation experiment of L-band minute-level sounding data with WRF model[J]. Meteor Mon, 41(6):695-706.
叶笃正, 罗四维, 朱抱真, 1957. 西藏高原及其附近的流场结构和对流层大气的热量平衡[J]. 气象学报, 28(2):108-121. Ye D Z, Luo S W, Zhu B Z, 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J]. Acta Meteora Sinica, 28(2):108-121.
于晓晶, 于志翔, 辛渝, 等, 2014. 沙漠绿洲戈壁区域同化预报系统降水预报检验[J]. 暴雨灾害, 33(3):281-289. Yu X J, Yu Z X, Xin Y, et al, 2014. Performance verification of Desert Oasis Gobi regional assimilation and forecast system for precipitation forecast[J]. Torrential Rain Disaster, 33(3):281-289.
章国材, 2004. 美国WRF模式的进展和应用前景[J]. 气象, 30(12):27-31. Zhang G C, 2004. Progress of weather research and forecast (WRF) model and application in the United States[J]. Meteor Mon, 30(12):27-31.
张俊兰, 魏荣庆, 杨柳, 2014. 2013年南疆两场罕见暴雨落区和强度的对比分析[J]. 沙漠与绿洲气象, 8(5):1-9. Zhang J L, Wei R Q, Yang L, 2014. Comparison of precipitation area and intensity of two rare heavy rainfall over Southern Xinjiang in 2013[J]. Desert Oasis Meteor, 8(5):1-9.
张云惠, 陈春艳, 杨莲梅, 等, 2013. 南疆西部一次罕见暴雨过程的成因分析[J]. 高原气象, 32(1):191-200. Zhang Y H, Chen C Y, Yang L M, et al, 2013. Cause analysis on rare rainstorm in West of Southern Xinjiang[J]. Plateau Meteor, 32(1):191-200. DOI:10. 7522/j. issn. 1000-0534. 2012. 00019.
张云惠, 李海燕, 蔺喜禄, 等, 2015. 南疆西部持续性暴雨环流背景及天气尺度的动力过程分析[J]. 气象, 41(7):816-824. Zhang Y H, Li H Y, Lin X L, 2015. Analysis of continuous rainstorm circulation background and the dynamic process of synoptic-scale in West of Southern Xinjiang[J]. Meteor Mon, 41(7):816-824.
张新忠, 陈军明, 赵平, 2015. 多普勒天气雷达资料同化对江淮暴雨模拟的影响[J]. 应用气象学报, 26(5):555-566. Zhang X Z, Chen J M, Zhao P, 2015. Impacts of Doppler radar data assimilation on the simulation of severe heavy rainfall events[J]. J Appl Meteor Sci, 26(5):555-566.
周建琴, 钱正安, 蔡英, 等, 2009. 夏季不同源地水汽对我国西北区降水影响的数值模拟(Ⅱ):减、增各源区水汽的敏感性试验结果[J]. 高原气象, 28(6):1220-1232. Zhou J Q, Qian Z A, Cai Y, et al, 2009. Simulation on impact of water vapor in various source areas on NWC summer precipitation (Ⅱ):sensitive run results of effects of decreasing (increasing) water vapor in various source areas[J]. Plateau Meteor, 28(6):1220-1232.
周俊前, 刘新, 李伟平, 等, 2016. 青藏高原春季地表异常对西北地区东部降水变化的影响[J]. 高原气象, 35(4):845-853. Zhou J Q, Liu X, Li W P, et al, 2016. Relationship between surface sensible heating over the Qinghai-Xizang Plateau and precipitation in the eastern part of Northwest China in spring[J]. Plateau Meteor, 35(4):845-853. DOI:10. 7522/j. issn. 1000-0534. 2015. 00053.
[1] 李宏毅, 肖子牛, 朱玉祥. 藏东南草地下垫面地气通量交换日变化的数值模拟[J]. 高原气象, 2018, 37(2): 443-454.
[2] 杨启东, 凌彩云, 杜冰, 王丽娟, 杨扬. 粒子群算法在陆面过程模式参数优化中的应用研究[J]. 高原气象, 2017, 36(4): 1060-1071.
[3] 辜旭赞, 赵军, 唐永兰. 全球质量守恒准均匀经纬网格三次样条函数变换准拉格朗日积分方案与模拟个例[J]. 高原气象, 2017, 36(4): 1091-1105.
[4] 吴遥, 李跃清, 蒋兴文, 董元昌. WRF模拟青藏高原东南部极端旱涝年降水的参数敏感性研究[J]. 高原气象, 2017, 36(3): 619-631.
[5] 许威杰, 张耀存. 凝结潜热加热与对流反馈对一次高原低涡过程影响的数值模拟[J]. 高原气象, 2017, 36(3): 763-775.
[6] 孙学金, 李岩, 张燕鸿, 宁辉, 唐敬, 文元宏, 苗青建. 基于WRF-LES的干旱湖区近地面风场模拟与敏感性研究[J]. 高原气象, 2017, 36(3): 835-844.
[7] 谢志鹏, 胡泽勇, 刘火霖, 孙根厚, 杨耀先, 蔺筠, 黄芳芳. 陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J]. 高原气象, 2017, 36(1): 1-12.
[8] 王晓峰, 王平, 张蕾, 李佳, 许晓林. 多源观测在快速更新同化系统中的敏感性试验[J]. 高原气象, 2017, 36(1): 148-161.
[9] 张宇, 陈德辉, 仲跻芹. 数值预报在青藏高原的不确定性对其下游预报的影响[J]. 高原气象, 2016, 35(6): 1430-1440.
[10] 陈贵川, 吴钲, 谌芸, 李强, 朱岩. 中低层增温对强降水中涡旋形成的敏感性研究[J]. 高原气象, 2016, 35(6): 1498-1511.
[11] 汪栩加, 郑志海, 顾伯辉, 赵玉衡. BCC_CSM模式夏季长江中下游水汽输送评估[J]. 高原气象, 2016, 35(5): 1270-1279.
[12] 高峰, 吴统文, 辛晓歌. 系统误差订正方法在热带海温年代际试验中的应用研究[J]. 高原气象, 2016, 35(5): 1364-1375.
[13] 王蒙, 王振会, 王云, 董慧杰. 粒子边缘粘连对0℃层亮带雷达反射率因子的影响分析[J]. 高原气象, 2016, 35(5): 1401-1408.
[14] 丁治英, 王一颉, 刘瑞翔. 青藏高原一次MCC转MCV过程研究[J]. 高原气象, 2016, 35(3): 561-573.
[15] 肖林鸿, 高艳红, Chen Fei, 许建伟, 李凯, 李霞, 蒋盈沙. 青藏高原极端气温的动力降尺度模拟[J]. 高原气象, 2016, 35(3): 574-589.