Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (1): 28-42    DOI: 10.7522/j.issn.1000-0534.2017.00019
论文     
青藏高原地表感热通量变化特征及其对气候变化的响应
解晋1,2, 余晔1,3, 刘川4, 葛骏5
1. 中国科学院西北生态环境资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049;
3. 中国科学院平凉陆面过程与灾害天气观测研究站, 甘肃 平凉 744015;
4. 重庆市气象局, 重庆 401147;
5. 南京大学大气科学学院, 江苏 南京 210093
Characteristics of Surface Sensible Heat Flux over the Qinghai-Tibetan Plateau and Its Response to Climate Change
XIE Jin1,2, YU Ye1,3, LIU Chuan4, GE Jun5
1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions Chinese Academy of Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Pingliang Land Surface Process and Severe Weather Research Station, Chinese Academy of Science, Pingliang 744015, Gansu, China;
4. Chongqing Meteorological Administration, Chongqing 401147, China;
5. School of Atmospheric Sciences, Nanjing University, Nanjing 210093, Jiangsu, China
 全文: PDF(22874 KB)  
摘要: 选取中国气象局在青藏高原(下称高原)地区常规气象观测站点中85个资料连续性较好的站点资料,基于CHEN-WENG感热交换系数方案计算了1981-2014年地表日均感热通量,并用M-K检验法分析了季节平均感热通量和年均感热通量的年际变化特征,结合经验正交函数法EOF(Empirical Orthogonal Function)、Pearson相关法,分析了年均感热通量的时空演变及异常分布特征以及不同地区站点感热通量与气候因子的相关性。结果表明,1981年以来,高原地表感热通量无论在年尺度还是季节尺度上的年际变化都表现为先下降后上升的趋势,其中春季和冬季由下降转变为上升的年份早于夏季和秋季,且夏季上升的幅度是四季中最弱的;1981-2003年间感热通量下降主要与地气温差和平均风速的减小有关,而2004-2014年间感热通量的上升主要与地气温差的显著增大有关。空间上,各站点感热通量的上升或下降并不同步,但存在一定的相互联系,感热通量上升的站点主要位于青海省;感热通量与各气候因子的相关性有明显的时空差异,整体上受地表温度影响显著,与地表温度变化呈正相关;与降水、日照时数、风速等气候因子的相关性在年尺度上存在较大的空间差异,在季节尺度上,感热通量与气象因子的季节相关性较好,尤其是夏季,感热通量与降水呈反相关,与日照时数、风速和气温呈正相关,其次是春季,秋、冬季相关性较差。
关键词: 青藏高原感热通量M-K检验EOF分析Pearson相关法    
Abstract: Using the conventional meteorological observation data of the Qinghai-Tibetan Plateau (QTP) offered by the China Meteorological Administration (CMA), the average daily sensible heat flux from 1981 to 2014 was calculated on the basis of 85 stations which have continuously better data and the CHEN-WENG heat exchange parameterized scheme. The characteristics of seasonal average and annual average sensible heat flux and the connections between them and climate factors which include surface temperature, air temperature at 1.5 m, wind speed, precipitation and sunshine duration were analyzed by using the methods of Mann-Kendall test, empirical orthogonal function (EOF), and Pearson correlation. The results showed that both seasonal average and annual average sensible heat flux had risen after falling for more than 20 years since 1981 and the time of change happened earlier in winter and spring than in summer and autumn. The decline of sensible heat flux between 1981 and 2003 was mainly caused by the decrease of land-air temperature difference and the average wind speed, while the raise between 2004 and 2014 was mostly due to the significantly increase of land-air temperature difference, and not all stations had the same pace in decrease or increase. The stations which increased mostly locate in Qinghai province. In addition, the correlations between the sensible heat flux and climate factors are obviously temporal and spatial different. Almost the whole stations are significantly influenced by the surface temperature with positive correlation with sensible heat flux, while other climate factors are probably tend to have a better correlation with sensible heat flux in the growing season than in the whole year, especially in summer when the sensible heat flux mostly has a negative correlation with the precipitation and a positive correlation with wind speed, air temperature at 1.5 m and sunshine duration.
Key words: Qinghai-Tibetan Plateau    sensible heat flux    M-K test    EOF analysis    Pearson correlation
收稿日期: 2016-12-29 出版日期: 2018-02-20
ZTFLH:  P466  
基金资助: 国家重大科学研究计划项目(2013CB956004)
通讯作者: 余晔.E-mail:yyu@lzb.ac.cn     E-mail: yyu@lzb.ac.cn
作者简介: 解晋(1989-),男,江苏淮安人,博士研究生,主要从事陆面过程与气候变化研究.E-mail:xiejin@lzb.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
解晋
余晔
刘川
葛骏

引用本文:

解晋, 余晔, 刘川, 葛骏. 青藏高原地表感热通量变化特征及其对气候变化的响应[J]. 高原气象, 2018, 37(1): 28-42.

XIE Jin, YU Ye, LIU Chuan, GE Jun. Characteristics of Surface Sensible Heat Flux over the Qinghai-Tibetan Plateau and Its Response to Climate Change. PLATEAU METEOROLOGY, 2018, 37(1): 28-42.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00019        http://www.gyqx.ac.cn/CN/Y2018/V37/I1/28

Chen L X, Reiter E R, Feng Z Q, 1985. The atmospheric heat source over the Tibetan Plateau:May-August 1979[J]. Mon Wea Rev, 113:1771-1790.
Chen X, Su Z, Ma Y, et al, 2014. Development of a 10-year (20012010) 0. 1_data set of land-surface energy balance for mainland China[J]. Atmos Chem Phys, 14:13097-13117.
Duan A M, Wu G X, 2008. Weakening trend in the atmospheric heat source over the Tibetan plateau during recent decades. Part I:Observations[J]. J Climate, 21(13):3149-3164.
Garratt J R, 1992. The atmospheric boundary layer[M]. Cambridge:Cambridge University Press, 316.
Ma Y M, Han C B, Zhong L, et al, 2014. Using MODIS and AVHRR data to determine regional surface heating field and heat flux distributions over the heterogeneous landscape of the Tibetan Plateau[J]. Theor Appl Climatol, 117(3/4):643-652.
Monin A S, Obukhov A M, 1954. Basic laws of turbulent mixing in the atmosphere near the ground[J]. Tr Akad Nauk SSSR Geofiz Inst, 24(151):163-187.
Shi Q, Liang S, 2014. Surface-sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data[J]. Atmos Chem Phys, 14(11):5659-5677.
Wang M R, Zhou S W, Duan A M, 2012. Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades:Comparison of observations and reanalysis data[J]. Chin Sci Bull, 57(5):548-557.
Wang X J, Yang M X, Liang X W, et al, 2014a. The dramatic climate warming in the Qaidam Basin, northeastern Tibetan Plateau, during 1961-2010[J]. Int J Climatol, 34(5):1524-1537.
Wang Z Q, Duan A M, Wu G X, 2014b. Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China:case studies using the WRF model[J]. Climate Dyn, 42(11/12):2885-2898.
Xu X D, Lu C G, Ding Y H, et al, 2013. What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau[J]. Atmos Sci Lett, 14(4):227-234.
Yang K, Qin J, Guo X F, et al, 2009. Method development for estimating sensible heat flux over the Tibetan Plateau from CMA data[J]. J Appl Meteor Climatol, 48(12):2474-2486.
Yang K, Guo X F, Wu B Y, 2010. Recent trends in surface sensible heat flux on the Tibetan Plateau[J]. Sci China Earth Sci, 54(1):19-28.
Zhou L T, Huang R H, 2014. Regional differences in surface sensible and latent heat fluxes in China[J]. Theor Appl Climatol, 116(3/4):625-637.
Zhu X Y, Liu Y M, Wu G X, 2012. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets[J]. Sci China Earth Sci, 55(5):779-786.
白彬人, 胡泽勇, 2016. 高原热力作用对高原夏季风爆发的指示意义[J]. 高原气象, 35(2):329-336. Bai B R, Hu Z Y, 2016. Indicative significance of thermal effects over the Qinghai-Xizang Plateau to the onset of plateau summer monsoon[J]. Plateau Meteor, 35(2):329-336. DOI:10. 7522/j. issn. 1000-0534. 2015. 00016.
柏晶榆, 徐祥德, 周玉淑, 等, 2003. 春季青藏高原感热异常对长江中下游夏季降水影响的初步研究[J]. 应用气象学报, 14(3):363-368. Bai J Y, Xu X D, Zhou Y S, et al, 2003. Preliminary research on inhomogeneous distribution of Tibetan Plateau sensible heat fluxes in spring[J]. J Appl Meteor Sci, 14(3):363-368.
岑思弦, 巩远发, 赖欣, 2014. 青藏高原及其周围地区大气热源对川渝盆地夏季降水的影响[J]. 高原气象, 33(5):1182-1189. Ceng S X, Gong Y F, Lai X, 2014. Impact of heat source over Qinghai-Xizang Plateau and its surrounding areas on rainfall in Sichuan-Chongqing Basin in summer[J]. Plateau Meteor, 33(5):1182-1189. DOI:10. 7522/j. issn. 1000-0534. 2013. 00122.
陈万隆, 翁笃鸣, 1984. 关于青藏高原感热和潜热旬总量计算方法的初步研究. 青藏高原气象科学实验文集(二)[M]. 北京:科学出版社, 35-45. Chen W L, Wong D M, 1984. A preliminary study on the computational method of 10-day mean sensible heat and latent heat on the Tibetan Plateau. Collected works of the Qinghai-Xizang Plateau Meteorological Experiment (Series 2)[M]. Beijing:Science Press, 35-45.
胡江林, 朱乾根, 1993. 青藏高原感热加热对7月份大气环流和亚洲夏季风影响的数值试验[J]. 热带气象学报, 9(1):78-84. Hu J L, Zhu Q G, 1993. Numerical experiments with effects of sensible heating of the Tibetan Plateau on July atmospheric general circulation and summer monsoon in Asia[J]. J Trop Meteor, 9(1):78-84.
李栋梁, 魏丽, 李维京, 等, 2003. 青藏高原地面感热对北半球大气环流和中国气候异常的影响[J]. 气候与环境研究, 18(1):60-70. Li D L, Wei L, Li W J, et al, 2003. The effect of surface sensible heat flux of the Qinghai-Xizang Plateau on general circulation over the northern hemisphere and climatic anomaly of China[J]. Climatic Environ Res, 18(1):60-70.
马耀明, 姚檀栋, 王介民, 等, 2006. 青藏高原复杂地表能量通量研究[J]. 地球科学进展, 21(12):1215-1223. Ma Y M, Yao T D, Wang J M, et al, 2006. The study on the land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau[J]. Adv Earth Sci, 21(12):1215-1223.
宁亮, 钱永甫, 2006. 北非和青藏高原感热振荡特征及与我国东部夏季降水的关系[J]. 高原气象, 25(3):357-365. Ning Liang, Qian Y F. 2006. Oscillation characteristics of sensible heat in North Africa and Qinghai-Xizang Plateau and their impacts on the rainfall in East China[J]. Plateau Meteor, 25(3):357-365.
施晓辉, 温敏, 2015. 中国持续性暴雨特征及青藏高原热源的影响[J]. 高原气象, 34(3):611-620. Shi X H, Wen M, 2015. Distribution and variation of persistent heavy rainfall events in China and possible impacts of heating source anomaly over Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(3):611-620. DOI:10. 7522/j. issn. 1000-0534. 2014. 00039.
宋敏红, 吴统文, 钱正安, 2000. 高原地区NCEP热通量再分析资料的检验及在夏季降水预测中的应用[J]. 高原气象, 19(4):467-475. Song M H, Wu T W, Qian Z A, 2000. Verification of NCEP surface heat fluxes over QXP and its application to summer precipitation forecast[J]. Plateau Meteor, 19(4):467-475.
唐瑜, 余锦华, 2008. 青藏高原地表感热与华北夏季降水的相关分析[J]. 气象科学, 28(2):201-204. Tang Y, Yu J H, 2008. A study on the correlation between Tibetan Plateau surface sensible heating and the precipation over north China during rainy season[J]. Scientia Meteor Sinica, 28(2):201-204.
王学佳, 杨梅学, 万国宁, 2013. 近60年青藏高原地区地面感热通量的时空演变特征[J]. 高原气象, 32(6):1557-1567. Wang X J, Yang M X, Wan G N, 2013. Temporal-spatial distribution and evolution of surface sensible heat flux over Qinghai-Xizang Plateau during last 60 years[J]. Plateau Meteor, 32(6):1557-1567. DOI:10. 7522/j. issn. 1000-0534. 2012. 00151.
吴国雄, 刘屹岷, 刘新, 等, 2005. 青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学, 29(1):47-58. Wu G X, Liu Y M, Liu X, et al, 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer[J]. Chinese J Atmos Sci, 29(1):47-58.
吴绍洪, 尹云鹤, 郑度, 等, 2005. 青藏高原近30年气候变化趋势[J]. 地理学报, 60(1):3-11. Wu S H, Yin Y H, Zheng D, et al, 2005. Climate changes in the Tibetan Plateau during the last three decades[J]. Acta Geographica Sinica, 60(1):3-11.
叶燕华, 李栋梁, 陈晓光, 2007. 黄土高原春季降水对青藏高原感热异常的响应[J]. 中国沙漠, 27(2):315-319. Ye Y H, Li D L, Chen X G, 2007. Response of spring precipitation in Loess Plateau to surface sensible heat in Qinghai-Xizang Plateau[J]. J Desert Res, 27(2):315-319.
曾钰婵, 范广洲, 赖欣, 等, 2016. 青藏高原季风活动与大气热源/汇的关系[J]. 高原气象, 35(5):1148-1156. Zeng Y C, Fan G Z, Lai X, et al, 2016. Relationship between the Qinghai-Xizang Plateau monsoon and the atmospheric heat source/sink[J]. Plateau Meteor, 35(5):1148-1156. DOI:10. 7522/j. issn. 1000-0534. 2015. 00093.
章基嘉, 朱抱真, 朱福康, 等, 1988. 青藏高原气象学进展(青藏高原气象科学实验1979和研究)[M]. 北京:科学出版社, 262. Zhang J J, Zhu B Z, Zhu F K, et al, 1988. Advances in the Qinghai-Xizang Plateau meteorology——The Qinghai-Xizang Plateau meteorological experiment (1979) and research[M]. Beijing:Science Press, 262.
钟海玲, 李栋梁, 高荣, 2009, 青藏高原感热异常对沙尘暴影响的数值模拟[J]. 高原气象, 28(2):293-298. Zhong H L, Li D L, Gao R, 2009. Numerical simulation of impact of sensible heat of surface abnormity over Tibetan Plateau on sand-dust storm[J]. Plateau Meteor, 28(2):293-298.
周俊前, 刘新, 李伟平, 等, 2016. 青藏高原春季地表感热异常对西北地区东部降水变化的影响[J]. 高原气象, 35(4):845-853. Zhou J Q, Liu X, Li W P, et al, 2016. Relationship between surface sensible heating over the Qinghai-Xizang Plateau and precipitation in the eastern part of Northwest China in spring[J]. Plateau Meteor, 35(4):845-853. DOI:10. 7522/j. issn. 1000-0534. 2015. 00053.
朱乾根, 管兆勇, 1997. 青藏高原感热加热异常与夏季低频环流的数值研究[J]. 南京气象学院学报, 20(2):186-192. Zhu Q G, Guan Z Y, 1997. Numerical study of influence of Tibetan sensible heating abnormality on summer Asian monsoon low-frequency oscillation[J]. Journal of Nanjing Institute of Meteorology, 20(2):186-192.
[1] 陈丹, 周长艳, 熊光明, 邓梦雨. 近53年四川盆地夏季暴雨变化特征分析[J]. 高原气象, 2018, 37(1): 197-206.
[2] 徐安伦, 李育, 杨帆, 苏锦兰, 董保举, 孙绩华. 连年干旱背景下洱海流域降水的精细化特征[J]. 高原气象, 2017, 36(6): 1557-1566.
[3] 许霖, 姚蓉, 王晓雷, 欧小峰. 湖南省雷暴大风的时空分布和变化特征[J]. 高原气象, 2017, 36(4): 993-1000.
[4] 张英华, 李艳, 李德帅. 东亚经向波列对中国中东部盛夏气温的影响[J]. 高原气象, 2017, 36(4): 1010-1021.
[5] 杨玮, 徐敏, 周顺武, 罗连升. 江淮流域6-7月极端强降水事件时空变化及环流异常[J]. 高原气象, 2017, 36(3): 718-735.
[6] 周长艳, 邓梦雨, 齐冬梅. 青藏高原湿池的气候特征及其变化[J]. 高原气象, 2017, 36(2): 294-306.
[7] 马浩, 李正泉, 张力. 南半球环状模对中国气候的影响研究进展[J]. 高原气象, 2016, 35(6): 1595-1608.
[8] 张精华, 张万诚, 郑建萌, 马涛. 1970-2009年冬季昆明准静止锋的变化特征及其影响分析[J]. 高原气象, 2016, 35(5): 1298-1306.
[9] 周俊前, 刘新, 李伟平, 朱陵晶, 吴辉. 青藏高原春季地表感热异常对西北地区东部降水变化的影响[J]. 高原气象, 2016, 35(4): 845-853.
[10] 曾波, 谌芸, 李泽椿. 中国中东部地区夏季中尺度对流系统发生前环境场特征[J]. 高原气象, 2016, 35(2): 460-468.
[11] 张英华, 李艳, 李德帅, 尚可政, 郑凤魁. 中国东部夏季极端高温的空间分布特征及其环流型[J]. 高原气象, 2016, 35(2): 469-483.
[12] 李娟, 孙建华, 张元春, 沈新勇. 四川盆地西部与东部持续性暴雨过程的对比分析[J]. 高原气象, 2016, 35(1): 64-76.
[13] 王丹, 盛立芳, 黄少妮, 白光弼, 高红燕. 孟加拉湾感热净通量与陕西秋季降水的联系[J]. 高原气象, 2015, 34(6): 1658-1667.
[14] 贾亚俊, 胡轶佳, 钟中, 朱益民. 夏季西太平洋副热带高压指数的统计预测模型[J]. 高原气象, 2015, 34(5): 1369-1378.
[15] 王晓明, 孙妍, 云天, 孙鸿雁, 纪玲玲, 倪慧. 1961-2010年吉林不同类型暴雪天气气候特征[J]. 高原气象, 2015, 34(4): 1139-1148.
img

QQ群聊

img

官方微信