Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (1): 43-53    DOI: 10.7522/j.issn.1000-0534.2017.00043
论文     
青藏高原近地表土壤冻融状况的时空变化特征
杨淑华1,2, 吴通华1, 李韧1, 朱小凡1,2, 王蔚华1,2, 余文君1,2, 秦艳慧1,2, 郝君明1,2
1. 中国科学院西北生态环境资源研究院 冰冻圈科学国家重点实验室, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049
Spatial-temporal Changes of the Near-surface Soil Freeze-thaw Status over the Qinghai-Tibetan Plateau
YANG Shuhua1,2, WU Tonghua1, LI Ren1, ZHU Xiaofan1,2, WANG Weihua1,2, YU Wenjun1,2, QIN Yanhui1,2, HAO Junming1,2
1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, State Key Laboratory of Cryospheric Sciences, Lanzhou 730000, Gansu, China;
2. University of Chinese Academy of Science, Beijing 100049, China
 全文: PDF(3339 KB)  
摘要: 利用青藏高原(下称高原)87个气象台站的日最低地表温度和气温资料,通过线性回归和相关分析法,分析高原1980-2015年近地表土壤冻融状况变化趋势及其与气温、海拔和纬度的相关性。利用Mann-Kendall检验对其进行突变分析,并探讨其空间变化特征。结果表明:近36年,高原近地表土壤冻融状况发生显著变化。冻结起始时间推迟约26天,其变化速率为0.72 d·a-1,冻结结束时间提前约14天,速率为0.40 d·a-1;冻结持续时间和冻结天数分别缩短约41天和33天,其变化速率分别为1.13 d·a-1和0.93 d·a-1。高原冻融状况变化整体表现一致,局部地区略有差异。高原中东部地区冻结起始时间较早,结束时间较晚;而在东南部地区则存在相反的变化特征,这是由于该地区海拔较低,且全年土壤温度较高导致。就冻融状况变化速率而言,东部地区变化最快,西部适中,变化较慢的站点零星分布在中部和南部地区。气温对近地表土壤冻融状况有重要影响,但气温对土壤冻融循环存在一定的滞后作用。此外,高原近地表土壤冻融状况与海拔呈极显著相关,随海拔的降低,冻结起始推迟,冻结结束时间提前,冻结持续时间和冻结天数显著减少。
关键词: 青藏高原冻融状况地表温度时空变化    
Abstract: Based on the surface soil daily minimum temperature and air temperature datas from 87 meteorological stations over the Qinghai-Tibetan Plateau (QTP), the trends of the near-surface freeze-thaw status and its correlation with air temperature, altitude and latitude was analyzed by using the linear regression method and correlation method. Using Mann-Kendall method to test the abrupt change and discuss the spatial variation characteristics of the near-surface soil freeze-thaw status over QTP. The results show that the near-surface soil freeze-thaw status changed significantly on QTP in recent 36 years. The first date of the near-surface freeze was delayed by about 26 days, or at a rate of 0.72 d·a-1, and the late date of the near-surface freeze was advanced by about 14 days, or at a rate of 0.40 d·a-1. The number of duration days and freeze days of the near-surface freeze decreased about 41 and 33 days respectively, and the rate of change was 1.13 d·a-1 and 0.93 d·a-1, respectively. The trend of the near-surface soil freeze-thaw status was same overall QTP, while in some areas was slight differences. The central and eastern region of QTP, the first date of the near-surface freeze was earlier and the last date was later than other regions. However, there was a contrary variation in the southeast region. It may be the lower elevation of the stations and it had the higher air temperature all years. For the change rate of the near-surface soil freeze-thaw status, the eastern part of QTP changed the fastest, the western was moderate and the stations that changed slower scattered in central and southern regions. The temperature had a significant effect on the near-surface soil freeze-thaw status, but air temperature had a certain lag effect on soil freeze-thaw cycle. And the near-surface soil freeze-thaw status was great significantly correlated with altitude. With decreasing elevation, the first days of the near-surface soil freeze was delayed and the late days was advanced, and the numbers of duration days and freeze days of the near-surface soil freeze were significantly decreased.
Key words: Qinghai-Tibetan Plateau    freeze-thaw status    surface temperature    spatial-temporal variation
收稿日期: 2017-04-24 出版日期: 2018-02-20
ZTFLH:  P468.0+22  
基金资助: 国家自然科学基金项目(41690142;41271086;41671070;41401086);中国科学院百人计划项目(51Y551831)
通讯作者: 吴通华.E-mail:thuawu@lzb.ac.cn     E-mail: thuawu@lzb.ac.cn
作者简介: 杨淑华(1993-),女,内蒙古丰镇市人,硕士研究生,主要从事寒区环境与GIS方面的研究.E-mail:shuhyang@lzb.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨淑华
吴通华
李韧
朱小凡
王蔚华
余文君
秦艳慧
郝君明

引用本文:

杨淑华, 吴通华, 李韧, 朱小凡, 王蔚华, 余文君, 秦艳慧, 郝君明. 青藏高原近地表土壤冻融状况的时空变化特征[J]. 高原气象, 2018, 37(1): 43-53.

YANG Shuhua, WU Tonghua, LI Ren, ZHU Xiaofan, WANG Weihua, YU Wenjun, QIN Yanhui, HAO Junming. Spatial-temporal Changes of the Near-surface Soil Freeze-thaw Status over the Qinghai-Tibetan Plateau. PLATEAU METEOROLOGY, 2018, 37(1): 43-53.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00043        http://www.gyqx.ac.cn/CN/Y2018/V37/I1/43

An W L, Hou S G, Zhang W B, et al, 2016. Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records[J]. Scientific Reports, 6:32813. DOI:10. 1038/srep32813.
Anandhi A, Perumal S, Gowda P H, et al, 2013. Long-term spatial and temporal trends in frost indices in Kansas, USA[J]. Climatic Change, 120(1):169-181.
Cheng G D, Wu T H, 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research Earth Surface, 112:F02S03. DOI:10. 1029/2006JF000631.
Duan A M, Xiao Z X, 2015. Does the climate warming hiatus exist over the Tibetan Plateau?[J]. Scientific Reports, 5:13711. DOI:10. 1038/srep13711.
Easterling D R, Wehner M F, 2009. Is the climate warming or cooling?[J]. Geophys Res Lett, 36(8):262-275.
Frauenfeld O W, Zhang T, Mccreight J L, et al, 2007. Northern Hemisphere freezing/thawing index variations over the twentieth century[J]. Int J Climatol, 27(1):47-63.
Goossens C, Berger A, 1987. How to recognize an abrupt climatic change?[J]. Nato Asi Series, 216:31-45.
Grogan P, Michelsen A, Ambus P, et al, 2004. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic health tundra mesocosms[J]. Soil Biology & Biochemistry, 36(4):641-654.
Guo D L, Wang H, 2014. Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J]. Chinese Sci Bull, 59(20):2439-2448.
Henry H A L, 2013. Soil freezing dynamics in a changing climate:Implications for agriculture[M]//plant and microbe adaptations to cold in a changing world, 17-27.
Jin R, Li X, Tao C, 2009. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature[J]. Remote Sensing of Environment, 113(12):2651-2660.
Knox J C, 2001. Agricultural influence on landscape sensitivity in the Upper Mississippi River Valley[J]. Catena, 42(2-4):193-224.
Kuang X X, Jiao J J, 2016. Review on climate change on the Tibetan Plateau during the last half century[J]. J Geophys Res Atmos, 121(8):1-29.
Larsen K S, Jonasson S, Michelsen A, 2002. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology, 21(3):187-195.
Li X, Jin R, Pan X, et al, 2012. Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau[J]. International Journal of Applied Earth Observation & Geoinformation, 17(1):33-42.
Mann H B, 1945. Nonparametric test against trend[J]. Econometrica, 13(3):245-259.
Niu G Y, Yang Z L, 2006. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J]. Journal of Hydrometeorology, 7(5):937-952.
Peng X Q, Frauenfeld O W, Cao B, et al, 2016. Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China[J]. Journal of Geophysical Research Earth Surface, 121:1984-2000.
Qiu J, 2008. China:The third pole[J]. Nature, 454(24):393-369.
Sinha T, Cherkauer K A, 2008. Time series analysis of soil freeze and thaw processes in Indiana[J]. Journal of Hydrometeorology, 9(5):936-950.
Urakawa R, Shibata H, Kuroiwa M, et al, 2014. Effects of freeze-thaw cycles resulting from winter climate change on soil nitrogen cycling in ten temperate forest ecosystems throughout the Japanese archipelago[J]. Soil Biology & Biochemistry, 74:82-94.
Wang K, Zhang T, Zhong X H, et al, 2015. Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China[J]. The Cryosphere, 9(3):1321-1331.
Wu Q B, Hou Y D, Yun H B, et al, 2015. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China[J]. Global & Planetary Change, 124:149-155.
Yu K, Xie S P, 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 501(7467):403-407.
Zhang T J, Armstrong R L, Smith J G, et al, 2003. Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States:Algorithm development and validation[J]. J Geophys Res:Atmos. 108(D22). Doi:10. 1029/2003JD003530.
Zhang T J, 2005. Historical overview of permafrost studies in China[J]. Physical Geography, 26(4):279-298.
Zou D, Zhao L, Yu S, et al, 2017. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 11:2527-2542.
葛骏, 余晔, 李振朝, 等, 2016. 青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J]. 高原气象, 35(3):608-620. Ge J, Yu Y, Li Z C, et al, 2016. Impacts of freeze/thaw processes on land surface energy fluxes in the permafrost region of Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(3):608-620. DOI:10. 7522/j. issn. 1000-0534. 2016. 00032.
胡国杰, 赵林, 李韧, 等, 2014. 青藏高原多年冻土区土壤冻融期间水热运移特征分析[J]. 土壤, 46(2):355-360. Hu G J, Zhao L, Li R, et al, 2014. Characteristics of hydro-thermal transfer during freezing and thawing period in permafrost regions[J]. Soils, 46(2):355-360.
李韧, 赵林, 丁永建, 等, 2012. 青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J]. 科学通报, 57(30):2864-2871. Li R, Zhao L, Ding Y J, et al, 2012. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin, 57(30):2864-2871.
李述训, 南卓铜, 赵林, 2002. 冻融作用对地气系统能量交换的影响分析[J]. 冰川冻土, 24(5):506-511. Li S X, Nan Z T, Zhao L, 2002. Impact of soil freezing and thawing process on thermal exchange between atmosphere and ground surface[J]. Journal of Glaciolgy & Geocryology, 24(5):506-511.
罗斯琼, 吕世华, 张宇, 等, 2008. CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J]. 高原气象, 27(2):259-271. Luo S Q, Lü S H, Zhang Y, et al, 2008. Simulation analysis on land surface process of BJ site of central Tibetan Plateau Using CoLM[J]. Plateau Meteor, 27(2):259-271.
吕少宁, 李栋梁, 文军, 等, 2010. 全球变暖背景下青藏高原气温周期变化与突变分析[J]. 高原气象, 29(6):1378-1385. Lü S N, Li D L, Wen J, et al, 2010. Analysis on periodic variations and abrupt change of air temperature over Qinghai-Xizang Plateau under global warming[J]. Plateau Meteor, 29(6):1378-1385.
牛晓宁, 张济世, 2012. 全球地震活动与气温的相关性分析及统计特征[J]. 兰州交通大学学报, 31(3):108-111. Niu X T, Zhang J S, 2012. Correlation analysis and statistical characteristics of global earthquake and temperature[J]. Journal of Lanzhou Jiaotong University, 31(3):108-111.
潘保田, 李吉均, 1996. 青藏高原:全球气候变化的驱动机与放大器——Ⅲ. 青藏高原隆起对气候变化的影响[J]. 兰州大学学报(自科版), 32(1):108-115. Pan B T, Li J J, 1996. Qinghai-Tibetan Plateau:A driver and amplifier of the global climatic change[J]. Journal of Lanzhou University(Natural Sciences), 32(1):108-115.
邱国庆, 程国栋, 1995. 中国的多年冻土——过去与现在[J]. 第四纪研究, 15(1):13-22. Qiu G Q, Cheng G D, 1995. Permafrost in China:Past and present[J]. Quaternary Sciences, 15(1):13-22.
王澄海, 董文杰, 韦志刚, 2002. 陆面模式中土壤冻融过程参数化研究进展[J]. 地球科学进展, 17(1):44-52. Wang C H, Dong W J, Wei Z G, 2002. The development of study on the soil freezing-thaw process in land surface model[J]. Advance in Earth Sciences, 17(1), 44-52.
吴通华, 2005. 青藏高原多年冻土对全球气候变化的响应研究[D]. 兰州:中国科学院寒区旱区环境与工程研究所. Wu T H, 2005. A study on response of permafrost to global climate change in Qinghai-Tibetan Plateau[D]. Ph. D. thesis. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, in China.
谢志鹏, 胡泽勇, 刘火霖, 等, 2017. 陆面模式CLM4. 5对青藏高原高寒草甸地表能量交换模拟性能的评估[J]. 高原气象, 36(1):1-12. Xie Z P, Hu Z Y, Liu H L, et al, 2017. Evaluation of the surface energy exchange simulations of land surface model CLM4. 5 in alpine meadow over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(1):1-12. DOI:10. 7522/j. issn. 1000-0534. 2016. 00012.
许武成, 王文, 马劲松, 等, 2004. 1997——1998年厄尔尼诺事件的特征、成因及对气候的影响[J]. 海洋学研究, 22(3):1-8. Xu W C, Wang W, Ma J S, et al, 2004. The characteristics, causes of formation and climatic impact of the 19971998 El Ni(n)o event[J]. Donghai Marine Science, 22(3):1-8.
杨梅学, 姚檀栋, Hirose N, 等, 2006. 青藏高原表层土壤的日冻融循环[J]. 科学通报, 51(16):1974-1976. Yang M X, Yao T D, Hirose N, et al, 2006. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau[J]. Chinese Sci Bull, 51(16):1974-1976.
杨梅学, 姚檀栋, 勾晓华, 2000. 青藏公路沿线土壤的冻融过程及水热分布特征[J]. 自然科学进展, 10(5):443-450. Yang M X, Yao T D, Gou X H, 2000. Soil melting freezing processes and water heat distribution feature along the Qinghai-Xizang Highway[J]. Progress in Natural Science, 10(5):443-450.
张廷军, 晋锐, 高峰, 2009. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 24(9):963-972. Zhang T J, Jin R, Gao F, 2009. Overview of the satellite remote sensing of frozen ground:visible-thermal Infrared and radar sensor[J]. Advances in Earth Science, 24(9):963-972.
张寅生, 马颖钊, 张艳林, 等, 2015. 青藏高原坡面尺度冻融循环与水热条件空间分布[J]. 科学通报, 60(7):664-673. Zhang Y S, Ma Y Z, Zhang Y L, et al, 2015. Hillslope patterns in thaw-freeze cycle and hydrothermal regimes on Tibetan Plateau[J]. Chinese Science Bulletin, 60(7):664-673.
赵林, 程国栋, 李述训, 等, 2000. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 45(11):1205-1211. Zhao L, Cheng G D, Li S X, et al, 2000. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau[J]. Chinese Sci Bull, 45(11):1205-1211.
[1] 陈锋, 董美莹, 冀春晓. 综合分析法在复杂地形气温精细格点化中的应用[J]. 高原气象, 2016, 35(5): 1376-1388.
[2] 王田野, 吴通华, 李韧, 谢昌卫, 邹德富, 秦艳慧, 余文君, 王蔚华. 两种再分析月平均气温资料在蒙古国的适用性评估[J]. 高原气象, 2016, 35(3): 651-661.
img

QQ群聊

img

官方微信