Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (1): 78-92    DOI: 10.7522/j.issn.1000-0534.2017.00030
论文     
基于多源数据的青藏高原夏季降水与水汽输送的联系
谢欣汝1, 游庆龙1,2, 保云涛1, 孟宪红2
1. 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;
2. 中国科学院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000
The Connection Between the Precipitation and Water Vapor Transport over Qinghai-Tibetan Plateau in Summer Based on the Multiple Datasets
XIE Xinru1, YOU Qinglong1,2, BAO Yuntao1, MENG Xianhong2
1. Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD);Nanjing University of Information Science and Technology(NUIST), Nanjing 210044, Jiangsu, China;
2. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
 全文: PDF(22815 KB)  
摘要: 利用国家气象信息中心提供的1979-2014年青藏高原(下称高原)地区(26°-N42°N,75°-E105°E)113个站点的逐月降水资料作为基准降水资料,与另外4套格点降水资料(APHRO、CMAP、GPCP、GPCC)和8套再分析的降水资料(NCEP1、NCEP2、MERRA、ERA_Interim、ERA20c、20CRv2、JRA55、CFSR)作对比,可得12套再分析资料中,APHRO能够最好地刻画出高原1979-2007年夏季降水的时空分布形态。GPCP次之,能够较好地刻画其1979-2014年的特征。就气候态而言,水汽主要由南边界输入高原,输入大值区是下层;另外水汽同样从西边界和北边界输入高原,主要的输入层分别是中层和下层;而水汽主要是从东边界中层输出。多套资料比较可知,ERA_Interim和MERRA分别能较好地刻画高原本地和其周围地区夏季水汽输送情况。研究高原东南部降水的年际变化和环流的关系,发现在印度半岛和孟加拉湾处有一异常的纬向反气旋,其北边缘加强的水汽输送导致了高原东南部降水的异常增多。
关键词: 青藏高原水汽收支夏季降水年际变化反气旋    
Abstract: In this study, the monthly precipitation data set at 113 stations during 1979-2014 over the Qinghai-Tibetan Plateau (QTP) provided by the National Meteorological Information Center, had been compared with 4 gridded precipitation data sets (APHRO, CMAP, GPCP, GPCC) and 8 reanalysis data sets (NCEP1, NCEP2, MERRA, ERA_Interim, ERA20c, 20CRv2, JRA55, CFSR). Compared with the observation, it was found that the AHPRO and GPCP can capture the spatial and temporal patterns of the summer precipitation over the QTP during 1979-2007 and 1979-2014, respectively. For the climatology of water vapor, the southern boundary is the main moisture source over the QTP in summer with the dominant channel in the lower layer. Meanwhile, both the western and northern boundaries are also the moisture input over the QTP, with the main channels in the middle layer and the lower layer, respectively. Furthermore, the water vapor output over the QTP is through the eastern boundary by means of its middle layer. Generally, QTP is a moisture sink in summer, and the moisture is convergent over it, to which moisture advection term makes the greatest contribution, while wind divergence term has a diverse effect. In addition, ERA_Interim and NCEP1 showed better ability to delineate these characteristic, however, MERRA was the worst. By comparing multiple datasets, it was shown that MERRA and ERA_Interim can better depict the water vapor transport condition over the local QTP and peripheral area, respectively. Exploring relationship between the precipitation variability over the southeastern QTP and the atmospheric circulation, we picked out the high and low value years according to precipitation index. By conducting the synthesis analysis on them, it was shown that the moisture from the western boundary was the most sensitive to climate change and the decrease of net income in dry years was greater than the increase of net income in wet years, and ERA_Interim and MERRA can represent the water vapor transport condition at different boundary and levels in dry years and wet years better, respectively. Conducting the synthesis analysis on the integrated water vapor transport, it was revealed that there is a zonally orientated anticyclone anomaly across the Indian subcontinent and the Bay of Bengal, and the strong westwards water vapor transport at its northern edge attributes to the excessive precipitation over the southeastern QTP.
Key words: Qinghai-Tibetan Plateau (QTP)    summer precipitation    interannual variability    atmospheric circulation    anticyclone
收稿日期: 2017-03-24 出版日期: 2018-02-20
ZTFLH:  P467  
基金资助: 国家重点研发计划项目(2016YFA0601702);国家自然科学基金项目(41771069);中国科学院寒旱区陆面过程与气候变化重点实验室开放基金(LPCC201512);江苏省杰出青年基金项目(BK20140047);江苏高校优势学科建设工程资助项目(PAPD)
通讯作者: 游庆龙.E-mail:qinglong.you@nuist.edu.cn     E-mail: qinglong.you@nuist.edu.cn
作者简介: 谢欣汝(1994-),女,四川南充人,硕士研究生,主要从事青藏高原降水及其水汽输送研究.E-mail:kineral@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢欣汝
游庆龙
保云涛
孟宪红

引用本文:

谢欣汝, 游庆龙, 保云涛, 孟宪红. 基于多源数据的青藏高原夏季降水与水汽输送的联系[J]. 高原气象, 2018, 37(1): 78-92.

XIE Xinru, YOU Qinglong, BAO Yuntao, MENG Xianhong. The Connection Between the Precipitation and Water Vapor Transport over Qinghai-Tibetan Plateau in Summer Based on the Multiple Datasets. PLATEAU METEOROLOGY, 2018, 37(1): 78-92.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00030        http://www.gyqx.ac.cn/CN/Y2018/V37/I1/78

Adler R F, Huffman G J, Chang A, et al, 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present)[J]. J Hydrometeor, 4(6):1147-1167.
Bosilovich M G, Robertson F R, Chen J, 2011. Global energy and water budgets in MERRA[J]. J Climate, 24(22):5721-5739.
Compo G P, Whitaker J S, Sardeshmukh P D, et al, 2011. The twentieth century reanalysis project[J]. Quart J Roy Meteor Soc, 137(654):1-28.
Chow K C, Chan J C L, 2009. Diurnal variations of circulation and precipitation in the vicinity of the Tibetan Plateau in early summer[J], Climate Dyn, 32(1):55-73.
Feng L, Zhou T, 2012. Water vapor transport for summer precipitation over the Tibetan Plateau:Multidata set analysis[J]. J Geophys Res, 117(D20):85-99.
Fu Q, Johanson C M, Wallace J M, et al, 2006. Enhanced mid-latitude tropospheric warming in satellite measurements.[J]. Sci, 312(5777):1179-1179.
Gao Y, Cuo L, Zhang Y, 2014. Changes in moisture flux over the Tibetan Plateau during 1979-2011 and possible Mechanisms[J]. J Climate, 27(5):1876-1893.
Huang R H, Zhang Z Z, Huang G, 1998. Characteristics of the water vapor transport in East Asian monsoon region and its difference from that in South Asian monsoon region in summer[J], Chinese J Atmos Sci, 22:368-379.
Kalnay E, Kanamitsu M, Kistler R, et al, 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 77(3):437-471.
Kanamitsu M, Ebisuzaki W, Woollen J, et al, 2002. NCEP-DOE AMP-Ⅱreanalysis (R-2)[J]. Bull Amer Meteor Soc, 83(11):1631-1643.
Kistler R, Kalnay E, Collins W, et al, 2001. The NCEP-NCAR 50-year reanalysis:Monthly means CD-ROM and documentation[J]. Bull Amer Meteor Soc, 82(2):247-267.
Kobayashi S, Ota Y, Harada Y, 2015. The JRA-55 reanalysis:general specifications and basic characteristics[J]. J Meteor Soc Japan, 93(1):5-48.
Liu X D, Chen B D, 2000. Climatic warming in the Tibetan Plateau during recent decades[J]. Int J Climatol, 20(14):1729-1742.
Paul B, Dick D, Keith F, et al, 2009. The ERA_Interim archive[R]. ECWMF reanalysis project report series No. 1, European Centre for Medium-range Weather Forecasts.
Poli P, Hersbach H, Tan D, et al, 2013. The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C)[R]. ERA Report Series No. 14, European Center for Medium-range Weather Forecasts.
Rasmusson E M, 1967. Atmospheric water vapor transport and the water balance of North America. Part Ⅱ:Large-scale water balance investigations[J]. Mon Wea Rev, 95(96):403.
Rienecker M M, Suarez M J, Gelaro R, et al, 2011. MERRA:NASA's modern-era retrospective analysis for research and applications[J]. J Climate, 24(14):3624-3648.
Saha S, Moorthi S, Pan Hualu, et al, 2010. The NCEP Climate Forecast System Reanalysis[J]. Bull Ammer Meteor Soc, 91(8):1015-1057.
Schneider U, Fuchs T, Meyer-Christoffer A, et al, 2005. Global Precipitation Analysis Products of the GPCC[J]. Dtsch Wetterdienst, 9(12):163-170
Trenberth K, 1991. Climate diagnostics from global analyses:Conservation of mass in ECMWF analyses[J]. J Climate, 4(4):707-722.
Wang H, Xue F, 2003. Interannual variability of Somali jet and its influences on the inter-hemispheric water vapor transport and on the East Asian summer rainfall[J]. Chinese J Geophys, 46(1):11-20.
Wu S, Yin Y, Zheng D, et al, 2007. Climatic trends over the Tibetan Plateau during 1971-2000[J]. J Geograp Sci, 17(2):141-151.
Xie P P, Arkin P A, 1997. Global precipitation:A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs[J]. Bull Amer Meteor Soc, 78(11):2539-2558.
Xu X D, Lu C G, Shi X H, et al, 2008. World water tower:An atmospheric perspective[J]. Geophys Res Lett, 35(20):525-530.
Yatagai A, Arakawa O, Kamiguchi K, et al, 2009. A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. SOLA, 5(1):137-140.
Zhuo G, Xu X D, Chen L S, 2002. Water feature of summer precipitation on Tibetan Plateau[J]. Scientia Meteorologica Sinica, 22:1-7.
Zhou L B, Zhu J H, Zou H, et al, 2013. Atmospheric moisture distribution and transport over the Tibetan Plateau and the impacts of the south Asian summer monsoon[J]. Acta Meteor Sinica, 27(6):819-831.
Zhou S, Ping W U, Wang C, et al, 2012. Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau[J]. J Geograp Sci, 22(5):795-809.
Zhou T J, Yu R C, 2005. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China[J]. J Geophys Res, 110(8):211-211.
Zhou T J, Zhang X H, Wang S W, 1999. The air-sea freshwater exchange derived from NCEP/NCAR reanalysis data[J]. Acta Meteor Sinica, 57(4):264-282.
戴泽军, 宇如聪, 李建, 等, 2011. 三套再分析资料的中国夏季降水日变化特征[J]. 气象, 37(1):21-30. Dai Z J, Yu R C, Li J, et al, 2011. The characteristic of summer precipitation diurnal variation in three reanalysis datasets over China[J]. Meteor Mon, 37(1):21-30.
冯蕾, 魏凤英, 2008. 青藏高原夏季降水的区域特征及其与周边地区水汽条件的配置[J]. 高原气象, 27(3):491-499. Feng L, Wei F Y, 2008. Regional characteristics of summer precipitation on Tibetan Plateau and it's water vapor feature in neighboring areas[J]. Plateau Meteor, 27(3):491-499.
高登义, 邹捍, 王维, 1985. 雅鲁藏布江水汽通道对降水的影响[J], 山地研究, 4:239-249. Gao D Y, Zou H, Wang W, 1985. Influence of water vapor pass along the Yarlungzangbo river on precipitation[J]. J Mountain Sci, 4:239-249.
郭巧玲, 杨云松, 鲁学纲, 2011. 黑河流域1957-2008年径流变化特性分析[J]. 地理学报, 22(3):77-81. Guo Q L, Yang Y S, Lu X G, 2011. Analysis of variation character of annual runoff in Heihe River basin from 1957 to 2008[J]. Acta Geograp Sinica, 22(3):77-81.
黄荣辉, 张振洲, 黄刚, 等, 1998. 夏季东亚季风区水汽输送的特征与南亚季风区水汽输送特征的差异[J], 大气科学, 28(4):460-469. Huang R H, Zhang Z Z, Huang G, et al, 1998. Charateristics of the water vapor transport in east Asian monsoon region and its difference from that in south Asian monsoon region in summer[J]. Chinese J Atmos Sci, 28(4):460-469.
梁玲, 李跃清, 胡豪然, 等, 2013. 青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J]. 高原气象, 32(6):1538-1545. Liang L, Li Y Q, Hu H R, et al, 2013. Numerical study of influence of sensible heat anomalies in summer over Qinghai-Xizang Plateau on rainfall in Sichuan-Chongqing regions[J]. Plateau Meteor, 32(6):1538-1545. DOI:10. 7522/j. issn. 1000-0534. 2013. 00028.
林厚博, 游庆龙, 焦洋, 等, 2015. 基于高分辨率格点观测数据的青藏高原降水时空变化特征[J]. 自然资源学报 30(2):271-281. Lin H B, You Q L, Jiao Y, et al, 2015. Spatial and temporal characteristics of the precipitation over the Tibetan Plateau from 1961 to 2010 based on high resolution grid-observation datasets[J]. J Natural Resour, 30(2):271-281.
林厚博, 游庆龙, 焦洋, 等, 2016. 青藏高原及附近水汽输送对其夏季降水影响的分析[J]. 高原气象, 35(2):309-317. Lin H B, You Q L, Jiao Y, et al, 2016. Water vapor transportation and its influences on precipitation in summer over Qinghai-Xizang Plateau and its surrounding[J]. Plateau Meteor, 35(2):309-317. DOI:10. 7522/j. issn. 1000-0534. 2014. 00146.
李建, 宇如聪, 陈昊明, 等, 2010. 对三套再分析资料中国大陆地区夏季降水量的评估分析[J]. 气象, 36(12):1-9. Li J, Yu R C, Chen H M, et al, 2010. Evaluation and analyses of summer rainfall of mainland China in three reanalysis datasets[J]. Meteor Mon, 36(12):1-9.
论珠群培, 红梅, 建军, 等, 2008. 夏季西太平洋副热带高压对青藏高原降水影响[J]. 西藏科技 (12):63-65. Lunzhu Q P, Hong M, Jian J, et al, 2008. The influence of the western Pacific subtropical high on the summer precipitation over Tibetan Plateau[J]. Tibet Science and Technology (12):63-65.
钱正安, 吴统文, 梁潇云, 2001. 青藏高原及周围地区的平均垂直环流特征[J]. 大气科学, 25(4):444-454. Qian Z A, Wu T W, Liang X Y, 2001. Feature of mean vertical circulation over the Qinghai-Xizang Plateau and its neighborhood[J]. Chinese J Atmos Sci, 25(4):444-454.
解承莹, 李敏姣, 张雪芹, 2014. 近30a青藏高原夏季空中水资源时空变化特征及其成因[J]. 自然资源学报, (6):979-989. Xie C Y, Li M J, Zhang X Q, 2014. Characteristics of summer atomspheric water resources and its causes over the Tibetan plateau in recent 30 years[J]. J Natural Resour, (6):979-989.
解承莹, 李敏姣, 张雪芹, 等, 2015. 青藏高原南缘关键区夏季水汽输送特征及其与高原降水的关系[J], 高原气象, 34(2):327-337. Xie C Y, Li M J, Zhang X Q, 2015. Moisture transport features in summer and its rainfall effects over key region in southern margin of Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(2):327-337. DOI:10. 7522/j. issn. 1000-0534. 2014. 00034.
徐祥德, 陶诗言, 王继志, 等, 2002. 青藏高原-季风水汽输送"大三角扇形"影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 60(3):257-266. Xu X D, Tao S Y, Wang J Z, et al, 2002. The relationship between water vapor transport features of Tibetan Plateau-Monsoon "Large triangle" affecting region and drought-flood abnormality of China[J]. Acta Meteor Sinica, 60(3):257-266.
徐祥德, 赵天良, Lu C G, 等, 2014. 青藏高原大气水分循环特征[J]. 气象学报, 72(6):1079-1095. Xu X D, Zhao T L, Lu C G, et al, 2014. Characteristics of the water cycle in the atmosphere over the Tibetan Plateau[J]. Acta Meteor Sinica, 72(6):1079-1095.
尹云鹤, 吴绍洪, 赵东升, 等, 2012. 1981-2010年气候变化对青藏高原实际蒸散的影响[J]. 地理学报, 67(11):1471-1481. Yin Y H, Wu S H, Zhao D S, et al, 2012. Impact of climate change on actual evapotranspiration on the Tibetan Plateau during 19812010[J]. J Geograp Sci, 67(11):1471-1481.
周俊前, 刘新, 李伟平, 等, 2016. 青藏高原春季地表感热异常对西北地区东部降水变化的影响[J]. 高原气象, 35(4):845-853. Zhou J Q, Liu X, Li W P, et al, 2016. Relationship between surface sensible heating over the Qinghai-Xizang Plateau and precipitation in the eastern part of Northwest China in spring[J]. Plateau Meteor, 35(4):845-853. DOI:10. 7522/j. issn. 1000-0534. 2015. 00053.
周长艳, 李跃清, 李薇, 等, 2005. 青藏高原东部及邻近地区水汽输送的气候特征[J]. 高原气象, 24(6):880-888. Zhou C Y, Li Y Q, Li W, et al, 2005. Climatological characteristics of water vapor transport over eastern part of Qinghai-Xizang Plateau and its surroundings[J]. Plateau Meteor, 24(6):880-888.
郑然, 李栋梁, 蒋元春, 2015. 全球变暖背景下青藏高原气温变化的新特征[J]. 高原气象, 34(6):1531-1539. Zheng R, Li D L, Jiang Y C, 2015. New characteristics of temperature change over Qinghai-Xizang Plateau on the background of global warming[J]. Plateau Meteor, 34(6):1531-1539. DOI:10. 7522/j. issn. 1000-0534. 2014. 00123.
[1] 敖雪, 翟晴飞, 崔妍, 周晓宇, 易雪, 沈历都, 赵春雨, 林蓉. 三种风场再分析资料在辽宁省海岸带的比较与评估[J]. 高原气象, 2018, 37(1): 275-285.
[2] 刘维成, 张强, 傅朝. 近55年来中国西北地区降水变化特征及影响因素分析[J]. 高原气象, 2017, 36(6): 1533-1545.
[3] 张蓓, 戴新刚. 基于CMIP5的2006—2015年中国气温预估偏差分析及订正[J]. 高原气象, 2017, 36(6): 1619-1629.
[4] 计晓龙, 吴昊旻, 黄安宁, 赵卫, 吴阳. 青藏高原夏季降水日变化特征分析[J]. 高原气象, 2017, 36(5): 1188-1200.
[5] 冯蕾, 周天军. 20 km高分辨率全球模式对青藏高原夏季降水变化的预估[J]. 高原气象, 2017, 36(3): 587-595.
[6] 王丹云, 吕世华, 韩博, 李照国, 潘永洁, 孟宪红, 奥银焕, 王欣. 近30年黄土高原春季降水特征与春旱变化的关系[J]. 高原气象, 2017, 36(2): 395-406.
[7] 伍清, 蒋兴文, 谢洁. CMIP5模式对西南地区气温的模拟能力评估[J]. 高原气象, 2017, 36(2): 358-370.
[8] 吴蔚 梁卓然 刘校辰. CDF-T方法在站点尺度日降水预估中的应用[J]. 高原气象, 2017, 36(1): 0-0.
[9] 常燕, 吕世华, 罗斯琼, 吴晶, 李瑞青, 李锁锁. CMIP5耦合模式对青藏高原冻土变化的模拟和预估[J]. 高原气象, 2016, 35(5): 1157-1168.
[10] 郝立生, 丁一汇, 闵锦忠. 东亚夏季风变化与华北夏季降水异常的关系[J]. 高原气象, 2016, 35(5): 1280-1289.
[11] 张红丽, 张强, 刘骞, 颜鹏程. 中国南方和北方气候干燥程度的变化特征及差异性分析[J]. 高原气象, 2016, 35(5): 1339-1351.
[12] 王岱, 游庆龙, 江志红, 武文博, 焦洋. 基于均一化资料的中国极端地面气温变化分析[J]. 高原气象, 2016, 35(5): 1352-1363.
[13] 陈姣, 张耀存. 气候变化背景下陆地极端降水和温度变化区域差异[J]. 高原气象, 2016, 35(4): 955-968.
[14] 赵威, 韦志刚, 郑志远, 董文杰. 1964-2013年中国北方农牧交错带温度和降水时空演变特征[J]. 高原气象, 2016, 35(4): 979-988.
[15] 林婧婧, 张强. 中国气候态变化特征及其对气候变化分析的影响[J]. 高原气象, 2015, 34(6): 1593-1600.