Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (1): 93-105    DOI: 10.7522/j.issn.1000-0534.2017.00025
论文     
基于C-FMCW雷达的高原夏季对流云垂直结构分析研究
阮悦1,2,3, 阮征2, 魏鸣1, 葛润生2, 李丰2, 金龙4
1. 南京信息工程大学, 江苏 南京 210044;
2. 中国气象科学研究院灾害天气国家重点实验室, 北京 100081;
3. 福建省气象台, 福建 福州 350001;
4. 河北省气象技术装备中心, 河北 石家庄 050021
Research of the Vertical Structure of Summer Convective Precipiation Cloud over the Qinghai-Tibetan Plateau by C-FMCW Radar
RUAN Yue1,2,3, RUAN Zheng2, WEI Ming1, GE Runsheng2, LI Feng2, JIN Long4
1. Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
3. Fujian Weather Observatory, Fuzhou 350001, Fujian, China;
4. Meteorological technical equipment center of Hebei Province, Shijiazhuang 050021, Hebei, China
 全文: PDF(14169 KB)  
摘要: 第三次青藏高原观测试验中C波段垂直探测雷达于2014年7-8月在西藏那曲地区进行了连续探测,对获取的降水云廓线数据进行处理分析得到37个对流云体,提取包括对流强度CI(大气上升运动与下沉运动差)、云顶高度Hctop、35 dBZ回波区顶高Hz35、最大回波强度Zmax等13个特征参数。运用模糊聚类分析方法对对流降水云体特征参数进行深厚和浅薄对流云分类,其中Hctop和Hz35分类清晰,与CI分类的相似度超过0.8,使用一致性较好的三个特征参数CI、Hctop、Hz35对37个对流降水云进行聚类分析,得到9个深厚对流降水云体和28个浅薄对流降水云体。深厚对流云体中CI最大达到33 m·s-1、Hctop最深为12 km、Hz35高于5 km(距地高度AGL,下同);浅薄对流云中CI平均仅14 m·s-1、Hctop平均为2.5 km。在深厚对流云中0.8~1.5 km高度处常出现类似零度层亮带的回波强度和径向速度加强层,浅薄对流云体此特征不明显。结合天气雷达回波分析,深厚对流云体的水平分布多表现为对流单体嵌入到降水系统中,而浅薄对流云体则表现为孤立的爆米花分布。9次深厚对流累积地面降水量82.7 mm,占7-8月总降水量的28%,多伴有冰雹出现;28次浅薄对流累积地面降水量28.7 mm,降水贡献远小于深厚对流云。
关键词: 青藏高原C-FMCW雷达对流云分类大气垂直速度    
Abstract: During the Third Qinghai-Tibetan Plateau Atmospheric Scientific Experiment Ⅲ, the precipitation clouds in Nagqu, Tibet was continuously detected with C-FMCW radar from July to August 2014. The dataset gained was then analyzed, as a consequences of which, 37 convective clouds is obtained; further, 13 characteristic parameters were extracted, including Convective Index (difference of updafts and downdrafts, CI), the maximum cloud top(Hctop), the maximum height of 35 dBZ (Hz35), the maximum reflectivity (Zmax), etc. The cluster analysis method was applied for categorization of all these characteristic parameter in terms of deep and shallow convective cloud. From which, it is found that the parameters of Hctop and Hz35 are most favorable for the classification, with a similarity of more than 0.8 to that of CI. In addition, the parameters of CI, Hz35 and Hctop, which are in possession of relatively excellent consistency, were employed for a cluster analysis, then the 37 clouds were identified as 9 deep convective precipitation clouds and 28 shallow convective precipitation clouds. For the deep convective clouds, the maximum of CI is up to 33 m·s-1, as well as maximum Hctop of 12.5 km and Hz35 of higher than 5 km(above ground level, hereinafter the same). While, for the shallow convective precipitation clouds, the average of CI and Hctop are 14 m·s-1and 2.5 km, respectively. In the deep convective clouds, a steady layer similar to the Bright Band often appeared at the height of about 0.8~1.5km, which is however not applicable to the shallow convective clouds. Based on the C-FMCW radar, it is believed that the horizontal distribution of the deep convective clouds was mainly manifested as organizing multi-monomer into convective precipitation system, and shallow convective clouds showed a distribution like individual scattering popcorn. The 9 deep convection clouds resulted in a accumulated ground rainfall of 82.7 mm, accounting for 28% of the whole rainfall of the very two months, and sometimes it was accompanied by hail. On the contrast, all 28 shallow convective clouds only generated an accumulation of ground rainfall of 28.7 mm, which is far less than that of the deep convection rainfall contribution.
Key words: Qinghai-Tibetan Plateau    C-FMCW radar    convective clouds classification    air motion
收稿日期: 2016-09-07 出版日期: 2018-02-20
ZTFLH:  P412.25  
基金资助: 国家自然科学基金项目(41475029);公益性行业(气象)科研专项(GYHY201406001)
通讯作者: 阮征.E-mail:ruanz@camscma.cn     E-mail: ruanz@camscma.cn
作者简介: 阮悦(1991-),女,福建福州人,硕士研究生,主要从事垂直探测雷达云结构分析研究.E-mail:546442507@qq.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
阮悦
阮征
魏鸣
葛润生
李丰
金龙

引用本文:

阮悦, 阮征, 魏鸣, 葛润生, 李丰, 金龙. 基于C-FMCW雷达的高原夏季对流云垂直结构分析研究[J]. 高原气象, 2018, 37(1): 93-105.

RUAN Yue, RUAN Zheng, WEI Ming, GE Runsheng, LI Feng, JIN Long. Research of the Vertical Structure of Summer Convective Precipiation Cloud over the Qinghai-Tibetan Plateau by C-FMCW Radar. PLATEAU METEOROLOGY, 2018, 37(1): 93-105.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00025        http://www.gyqx.ac.cn/CN/Y2018/V37/I1/93

Browning K A, Ludlam F H, 1962. Airflow in convective storms[J]. Quart J Roy Meteor Soc, 88(376):117-135.
Fu Y, Liu G, Wu G, et al, 2006. Tower mast of precipitation over the central Tibetan Plateau summer[J]. Geophys Res Lett, 330(5):157-158.
Giangrande S E, Collis S, Straka J, et al, 2013. A summary of convective-core vertical velocity properties using ARM UHF wind profilers in Oklahoma[J]. J Appl Meteor & Climat, 52(10):2278-2295.
Johnson S C, 1967. Hierarchical clustering schemes[J]. Psychometrika, 32(3):241-254.
艾永智, 杨传荣, 李蕊, 2015. 玉溪一次强对流天气的中尺度特征分析[J]. 高原气象, 34(5):1391-1401. Ai Y Z, Yang C R, Li R, 2015. Mesoscale characteristic analyses on severe convective weather process at Yuxi in Yunnan[J]. Plateau Meteor, 34(5):1391-1401. DOI:10. 7522/j. issn. 1000-0534. 2014. 00068.
曾波, 谌芸, 李泽椿, 2016. 中国中东部地区夏季中尺度对流系统发生前环境场特征[J]. 高原气象, 35(2):460-468. Zeng B, Chen Y, Li Z C, 2016. Characteristic of precursor environment of mesoscale convective system during summer in Central-Eastern China[J]. Plateau Meteor, 35(2):460-468. DOI:10. 7522/j. issn. 1000-0534. 2015. 00003.
陈玲, 周筠珺, 2015. 青藏高原和四川盆地夏季降水云物理特性差异[J]. 高原气象, 34(3):621-632. Chen L, Zhou Y J, 2015. Different physical properties of summer precipitation clouds over Qinghai-Xizang Plateau and Sichuan Basin[J]. Plateau Meteor, 34(3):621-632. DOI:10. 7522/j. issn. 1000-0534. 2014. 00036.
陈隆勋, 宋玉宽, 刘骥平, 等, 1999. 从气象卫星资料揭示的青藏高原夏季对流云系的日变化[J]. 气象学报, 57(5):549-560. Chen L X, Song Y K, Liu J P, et al, 1999. On the diurnal variation of convection over qinghai-xizang plateau during summer as revealed from meteorological satellite data[J]. Acta Meteor Sinica, 57(5):549-560.
丁辉, 牛生杰, 张泽娇, 2015. 利用微脉冲激光雷达探测大气混合层高度和气溶胶垂直结构的初步研究[J]. 大气科学学报, 38(1):85-92. Ding H, Niu S J, Zhang Z J, 2015. Measurements of mixed layer height and aerosol vertical profile using a micropulse lidar[J]. Trans Atmos Sci, 38(1):85-92.
丁治英, 王一颉, 刘瑞翔, 2016. 青藏高原一次MCC转MCV过程研究[J]. 高原气象, 35(3):561-573. Ding Z Y, Wang Y J, Liu R X, 2016. Study about a process of MCC converting to MCV on Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(3):561-573. DOI:10. 7522/j. issn. 1000-0534. 2016. 00020.
杜军, 马玉才, 2004. 西藏高原降水变化趋势的气候分析[J]. 地理学报, 59(3):375-382. Du J, Ma Y C, 2004. Climatic trend of rainfall over Tibetan Plateau from 1971 to 2000[J]. Acta Geograp Sinica, 59(3):375-382.
傅云飞, 刘奇, 自勇, 等, 2008. 基于TRMM卫星探测的夏季青藏高原降水和潜热分析[J]. 高原山地气象研究, 28(1):8-18. Fu Y F, Liu Q, Zi Y, et al, 2008. Summer precipitation and latent heating over the Tibetan Plateau based on TRMM measurements[J]. Plateau & Mountain Meteor Research, 28(1):8-18.
李典, 白爱娟, 黄盛军, 2012. 利用TRMM卫星资料对青藏高原地区强对流天气特征分析[J]. 高原气象, 31(2):304-311. Li D, Bai A J, Huang S J, 2012. Characteristic analysis of a severe convective weather over Tibetan Plateau based on TRMM data[J]. Plateau Meteor, 31(2):304-311.
李江林, 余晔, 刘川, 2015. 青藏高原与黄土高原过渡区雷暴活动特征及东亚夏季风的影响[J]. 高原气象, 34(6):1575-1583. Li J L, Yu Y, Liu C, 2015. Variation of thunderstorm activities and its connection to East Asian Summer Monsoon in transition region between Qinghai-Xizang Plateau and Loess Plateau[J]. Plateau Meteor, 34(6):1575-1583. DOI:10. 7522/j. issn. 1000-0534. 2015. 00001.
廖希伟, 宋小全, 王东祥, 等, 2016. 激光云高仪对那曲地区大气边界层高度的探测分析[J]. 光子学报, 45(5):142-148. Liao X W, Song X Q, Wang D X, et al, 2016. Performance analysis of atmospheric boundary layer height measurement in Nagqu based on ceilometer[J]. Acta Photonica Sinica, 45(5):142-148.
刘黎平, 郑佳锋, 阮征, 等, 2015. 2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果[J]. 气象学报, 2015(4):635-647. Liu L P, Zheng J F, Ruan Z, et al, 2015. The preliminary analyses of the cloud properties over the Tibetan Plateau from the field experiments in clouds precipitation with the vavious radars[J]. Acta Meteor Sinica, 2015(4):635-647.
王琳, 谢晨波, 王珍珠, 等, 2012. 激光雷达探测大气边界层高度分布的梯度法应用研究[J]. 大气与环境光学学报, 7(3):161-167. Wang L, Xie C B, Wang Z Z, et al, 2012. Application of gradient method to detect height distribution of atmospheric boundary layer with Lidar[J]. J Atmos Environ Opt, 7(3):161-167.
潘晓, 傅云飞, 2015. 夏季青藏高原深厚及浅薄降水云气候特征分析[J]. 高原气象, 34(5):1191-1203. Pan X, Fu Y F, 2015. Analysis on climatological characteristics of deep and shallow precipitation cloud in summer over Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(5):1191-1203. DOI:10. 7522/j. issn. 1000-0534. 2014. 00112.
阮征, 金龙, 葛润生, 等, 2015. C波段调频连续波天气雷达探测系统及观测试验[J]. 气象学报, 2015(3):577-592. Ruan Z, Jin L, Ge R S, et al, 2015. The C-band FMCW pointing weather radar system and its observation experiment[J]. Acta Meteor Sinica, 2015(3):577-592.
王艺, 伯玥, 王澄海, 2016. 青藏高原中东部云量变化与气温的不对称升高[J]. 高原气象, 35(4):908-919. Wang Y, Bo Y, Wang C H, 2016. Relations of cloud amount to asymmetric diurnal temperature change in central and eastern Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(4):908-919. DOI:10. 7522/j. issn. 1000-0534. 2015. 00033.
徐祥德, 周明煜, 陈家宜, 等, 2001. 青藏高原地-气过程动力、热力结构综合物理图象[J]. 中国科学, 31(5):428-440. Xu X D, Zhou M Y, Chen J Y, et al, 2001. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau[J]. Sci in China (Ser. D), 45 (7):577-594.
尹金方, 王东海, 翟国庆, 等, 2013. 基于星载云雷达资料的东亚大陆云垂直结构特征分析[J]. 气象学报, 71(1):121-133. Yin J F, Wang D H, Zhai G Q, et al, 2013. A study of cloud vertical profiles from the Cloudsat data over the East Asian Continent[J]. Acta Meteor Sinica, 71(1):121-133.
张婉春, 张莹, 吕阳, 等, 2013. 利用激光雷达探测灰霾天气大气边界层高度[J]. 遥感学报, 17(4):981-992. Zhang W C, Zhang Y, Lü Y, et al, 2013. Observation of atmospheric boundary layer height by ground-based LiDAR during haze days[J]. J Remote Sens, 17(4):981-992.
朱士超, 银燕, 金莲姬, 等, 2012. 青藏高原一次强对流过程对水汽垂直输送的数值模拟[J]. 大气科学, 35(6):1057-1068. Zhu S C, Yin Y, Jin L J, et al, 2012. A numerical study of the vertical transport of water vapor by intense convection over the Tibetan Plateau[J]. Chinese J Atmos Sci, 35(6):1057-1068.
[1] 方德贤, 董新宁, 周国兵, 吴钲, 张勇, 黄安宁. 两种垂直风廓线的对比及应用Ⅱ:不同降水条件下风廓线特征[J]. 高原气象, 2017, 36(4): 971-983.
[2] 吴举秀, 周青, 杨传凤, 黄磊, 涂爱琴, 马传成. 2015年7月14日阵风锋及锋后大风多普勒天气雷达产品特征分析[J]. 高原气象, 2017, 36(4): 1082-1090.
[3] 文浩, 刘黎平, 张扬. 多普勒天气雷达地物回波识别算法改进[J]. 高原气象, 2017, 36(3): 736-749.
[4] 董新宁, 方德贤, 周国兵, 吴钲, 张勇, 黄安宁. 两种垂直风廓线的对比及应用I:一致性分析[J]. 高原气象, 2017, 36(3): 788-800.
[5] 勾亚彬, 汪章维, 刘黎平, 段艺萍, 陈超. 雷达波束部分遮挡识别应用及效果评估[J]. 高原气象, 2017, 36(1): 229-240.
[6] 路亚奇, 曹彦超, 张峰, 焦美龄, 李祥科. 陇东冰雹天气特征分析及预报预警[J]. 高原气象, 2016, 35(6): 1565-1576.
[7] 王艳春, 王红艳, 刘黎平. 三维变分方法反演风场的效果检验[J]. 高原气象, 2016, 35(4): 1087-1101.
[8] 刘黎平, 周淼. 垂直指向的Ka波段云雷达观测的0℃层亮带自动识别及亮带的特征分析[J]. 高原气象, 2016, 35(3): 734-744.
[9] 黄钰, 阮征, 郭学良, 何晖, 嵇磊. 垂直探测雷达对北京地区夏季降水分类统计[J]. 高原气象, 2016, 35(3): 745-754.
[10] 赵文, 张强, 赵建华. 陇东南地区强降水过程与雷达VIL产品的定量关系研究[J]. 高原气象, 2016, 35(2): 528-537.
[11] 曹杨, 苏德斌, 周筠珺, 徐文静. C波段双线偏振多普勒雷达差分相位质量分析[J]. 高原气象, 2016, 35(2): 548-559.
[12] 魏庆, 胡志群, 刘黎平, 吴林林. C波段偏振雷达数据预处理及在降水估计中的应用[J]. 高原气象, 2016, 35(1): 231-243.
[13] 姚日升, 涂小萍, 杜坤, 丁烨毅, 朱佳敏, 杨豪. 两次冰雹过程边界层气象要素变化特征[J]. 高原气象, 2015, 34(6): 1677-1689.
[14] 王红艳, 刘黎平. 新一代天气雷达降水估算的区域覆盖能力评估[J]. 高原气象, 2015, 34(6): 1772-1784.
[15] 杨杰, 刘黎平, 赵城城, 吴亚昊. 雷达估测对流性降水的误差空间分布及Z-R关系的优化[J]. 高原气象, 2015, 34(6): 1785-1796.