Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (1): 106-122    DOI: 10.7522/j.issn.1000-0534.2017.00045
论文     
基于CERES卫星资料的青藏高原有效辐射变化规律
于涵, 张杰, 刘诗梦
气象灾害预报预警与评估协同创新中心/气象灾害省部共建教育部重点实验室, 南京信息工程大学, 江苏 南京 210044
The Variation of Effective Radiation in Qinghai-Tibetan Plateau Based on the CERES Satellite Data
YU Han, ZHANG Jie, BAI Hanbing
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
 全文: PDF(18535 KB)  
摘要: 有效辐射作为地表辐射平衡的重要组成部分,其对大气的加热对辐射平衡,能量平衡以及周边大气环流起着重要的作用。基于2000-2014年的Aqua/CERES卫星产品地表长波辐射及其他相关参数,研究了青藏高原(下称高原)地区全天气和晴天两个不同条件下地表有效辐射的时空分布及其成因。结果表明:在高原地区有效辐射呈现出西部地区较大,东南部较小的空间分布。由于高原有效辐射的变化存在区域性的不同,应用经验正交分解方法将高原分为高原西部边缘(Ⅰ区)、中西部腹地(Ⅱ区)、东北(Ⅲ区)和东南(Ⅳ区)4个气候区。有效辐射与地表向上长波辐射的增加(减弱)趋势基本一致,而大气逆辐射的改变对有效辐射的影响在不同气候分区的不同季节呈现出不同的变化趋势,且云通过增加大气逆辐射进而减小有效辐射。在高原中西部腹地(Ⅱ区)以冷平流为主,相对湿度偏低,而在其他三个地区则以暖平流为主,相对湿度偏高。温度平流和大气水汽等因子均通过影响大气逆辐射进而影响有效辐射。研究结果可为认识高原整体非绝热加热特征及影响机理提供参考。
关键词: 地表向上长波辐射大气逆辐射有效辐射全天气晴天    
Abstract: As an important component of surface radiation balance, effective radiation plays an important role in radiation balance, energy balance and atmospheric circulation. Based on the effective radiation and other relevant parameters of Aqua/CERES satellite products from 2000 to 2015, the spatial and temporal distribution of effective radiation and its factors of the Qinghai-Tibetan Plateau (QTP) were analyzed under two different conditions, which is all-sky and clear-sky. The following conclusions were obtained:The effective radiation of the western region of QTP is larger than the southeast. Because of the regional differences of effective radiation, QTP was divided into four climatic regions by using the EOF method, which is the west edge (region Ⅰ), the midwest hinterlandn (region Ⅱ), the northeast (region Ⅲ) and the southeast (region Ⅳ), The trend of effective radiation is consistent with the upward long-wave radiation with increased (reduced), but the effect of the change of the atmospheric counter radiation on the effective radiation showed different trends in different seasons and regions. The cloud reduces the effective radiation by increasing the atmospheric counter radiation. Over the past decade, the impact of cloud on the surface of the effective radiation was weakened. There is a positive correlation between the upward long-wave radiation and the surface temperature. Atmospheric counter radiation has a positive correlation with the atmospheric temperature and the relative humidity at 500 hPa. It is mainly cold advection and less relative humidity in the midwest hinterland of QTP (region Ⅱ), but in other three regions, it is mainly warm advection and high relative humidity. These factors like cold (warm) advection or relative humidity affect effective radiation by impacting on the atmospheric counter radiation. The results can provide a reference for understanding the diabatic heating characteristics and the influence mechanism of QTP.
Key words: Upward long-wave radiation    atmospheric counter radiation    effective radiation    all-sky    clear-sky
收稿日期: 2017-03-23 出版日期: 2018-02-20
ZTFLH:  P422  
基金资助: 国家自然科学基金青藏高原重大计划项目(91437107);国家自然科学基金重点项目(41630426;41375155);江苏高校“青蓝工程”
通讯作者: 张杰.E-mail:zhangj@nuist.edu.cn     E-mail: zhangj@nuist.edu.cn
作者简介: 于涵(1993-),女,辽宁鞍山人,硕士研究生,主要从事气候模拟与陆气相互作用的研究.E-mail:858268176@qq.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
于涵
张杰
刘诗梦

引用本文:

于涵, 张杰, 刘诗梦. 基于CERES卫星资料的青藏高原有效辐射变化规律[J]. 高原气象, 2018, 37(1): 106-122.

YU Han, ZHANG Jie, BAI Hanbing. The Variation of Effective Radiation in Qinghai-Tibetan Plateau Based on the CERES Satellite Data. PLATEAU METEOROLOGY, 2018, 37(1): 106-122.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00045        http://www.gyqx.ac.cn/CN/Y2018/V37/I1/106

Bisht G, Bras R L, 2010. Estimation of net radiation from the MODIS data under all sky conditions:Southern Great Plains case study[J]. Remote Sens Environ, 114(7):1522-1534.
Crawford T M, Duchon C E, 1999. An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation[J]. J App Meteor, 38(4):474-480.
Flohn H, 2007. Contributions to a meteorology of the Tibetan highlands[J]. Rda. ucar. edu.
Guillevic P C, Privette J L, Coudert B, et al, 2012. Land surface temperature product validation using NOAA's surface climate observation networks-Scaling methodology for the Visible Infrared Imager Radiometer Suite (VⅡRS)[J]. Remote Sens Environ, 124:282-298.
Gui S, Liang S, Li L, 2010. Evaluation of satellite-estimated surface longwave radiation using ground-based observations[J]. J Geophys Res-Atmos, 115(D18):311-319.
Hong J, Kim J, 2008. Simulation of surface radiation balance on the Tibetan Plateau[J]. Geophys Res Lett, 35(L08814):813-826.
Huang J, Wang Y, Wang T, et al, 2006. Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia[J]. Pro Nat Sci-Mater Int, 16(10):1084-1089.
Long D, Gao Y, Singh V P, 2010. Estimation of daily average net radiation from MODIS data and DEM over the Baiyangdian watershed in North China for clear sky days[J]. J Hydrol, 388(3):217-233.
Lorenz E N, 1956. Statistical forecasting program:Empirical orthogonal functions and statistical weather prediction[J]. Sci Rep, 409(2):997-999.
Mora A V, 2011. Atmospheric downwelling longwave radiation at the surface during cloudless and overcast conditions. Measurements and modeling[D]. Spain:Universitat de Girona.
Pearson K, F. R S, 1902. Data for the problem of evolution in man.:A second study of the variability and correlation of the hand[J]. Biometrika, 1(3):345-360.
Raschke E, Bakan S, Kinne S, 2006. An assessment of radiation budget data provided by the ISCCP and GEWEX-SRB[J]. Geophys Res Lett, 33(7):359-377.
Su W, Charlock T P, Rose F G, et al, 2015. Photosynthetically active radiation from Clouds and the Earth's Radiant Energy System (CERES) products[J]. J Geophys Res-Biogeo, 112(G2):531s.
Wang W, 2008. Estimating high spatial resolution clear-sky land surface longwave radiation budget from MODIS and GOES data[J]. Dissertations & Theses-Gradworks.
Wang W, Liang S, Augustine J A, 2009a. Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data[J]. IEEE Trans Geosci Remote Sens, 47(5):1559-1570.
Wang W, Liang S, 2009b. Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces from MODIS data[J]. Remote Sens Environ, 113(4):745-754.
Wang K, Wan Z, Wang P, et al, 2005. Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature//emissivity products[J]. J Geophys Res-Atmos, 110(11):D11109.
伯玥, 李小兰, 王澄海, 2014. 青藏高原地区积雪年际变化异常中心的季节变化特征[J]. 冰川冻土 36(6):1353-1362. Bo Y, Li X L, Wang C H, 2014. Seasonal characteristics of the interannual variations of the Tibetan Plateau snow cover[J]. J Glaciol Geocryol, 36(6):1353-1362.
蔡雯悦, 徐祥德, 孙绩华, 2012. 青藏高原东南部云状况与地表能量收支结构[J]. 气象学报, 70(4):837-846. Cai W Y, Xu X D, Sun J H, 2012. An investigation into the surface energy balance on the southeast edge of the Tibetan Plateau and the cloud's impact[J]. Acta Meteor Sinica, 70(4):837-846.
巩远发, 段廷扬, 陈隆勋, 等, 2005. 1997/1998年青藏高原西部地区辐射平衡各分量变化特征[J]. 气象学报, 63(2):225-235. Gong Y F, Duan T Y, Chen L X, et al, 2005. The variation characteristics of radiation budget components of the western Tibetan Plateau in 1997/1998[J]. Acta Meteor Sinica, 63(2):225-235.
何金海, 2011. 青藏高原大气热源特征及其影响和可能机制[M]. 北京:气象出版社, He J H. 2011. Characteristics and influences of atmospheric heat source on the Qinghai-Tibet Plateau[M]. Beijing:China Meteorological Press.
胡列群, 1997. 塔克拉玛干沙漠地面有效辐射研究[J]. 干旱区地理(汉文版), (1):25-32. Hu L Q, 1997. Research on surface efective radiation in Taklimakan Desert[J]. Arid Land Geo, (1):25-32.
胡泽勇, 程国栋, 谷良雷, 等, 2006. 青藏铁路路基表面太阳总辐射和温度反演方法[J]. 地球科学进展, 21(12):1304-1313. Hu Z Y, Cheng G D, Gu L L, et al, 2006. Calculating method of global radiation and temperature on the roadbed surface of Qinghai-Xizang Railway[J]. Adv Earth Sci, 21(12):1304-1313.
季国良, 江灏, 吕兰芝, 1995. 青藏高原的长波辐射特征[J]. 高原气象, V14(4):451-458. Ji G L, Jiang H, Lü L Z, 1995. Characteristics of longwave radiation over the Qinghai-Xizang Plateau[J]. Plateau Meteor, V14(4):451-458.
蒋兴文, 李跃清, 2010. 青藏高原地表辐射的气候特征[J]. 资源科学, 32(10):1932-1942. Jiang X W, Li Y Q, 2010. Climatological characteristics of surface radiation over the Tibet Plateau[J]. Resour Sci, 32(10):1932-1942.
李琰琰, 周少祥, 2012. 水汽增强温室效应的探讨[J]. 节能, 31(7):11-13. Li Y Y, Zhou S X, 2012. Discussion on greenhouse effect of water vapor enhancement[J]. Energy Conser, 31(7):11-13.
李韧, 杨文, 季国良, 等, 2006. 青藏高原有效辐射参数化[J]. 太阳能学报, 27(3):274-278. Li R, Yang W, Ji G L, et al, 2006. Parameterization of efective radiation over the Qinghai-Tibet Plateau[J]. Acta Energiae Solaris Sinica, 27(3):274-278.
李韧, 赵林, 丁永建, 等, 2011. 青藏高原地面有效辐射变化及其对表层土温的影响[J]. 冰川冻土, 33(5):1022-1032. Li R, Zhao L, Ding Y J, et al, 2011. Variations of surface effective rdiation and its on superficial ground temperatures on Tibet Plateau[J]. J Glaciol Geocryol, 33(5):1022-1032.
刘艳, 翁笃鸣, 2002. 中国地区云对地-气系统辐射强迫温度效应的气候研究[J]. 气象学报, 60(6):766-773. Liu Y, Weng D M, 2002. Climatological study of temperature effects of cloud-Radiative forcing in the earth-atmospheric system over China[J]. Acta Meteor Sinica, 60(6):766-773.
缪启龙, 江志红, 陈海山, 等, 2010. 现代气候学[M]. 北京:气象出版社. Miu Q L, Jiang Z H, Chen H S, et al, 2010. Modern climatology[M]. Beijing:China Meteorological Press.
王静, 华杰, 苏丽欣, 等, 2006. 实际地形下我国长波有效辐射的时空分布[C]//中国气象学会2006年年会"气候变化及其机理和模拟"分会场论文集. Wang J, Hua J, Su L X, et al, 2006. Temporal and spatial distribution of long wave effective radiation over actual terrain in China[C]//Symposium on Climate Change and Its Mechanism and Simulation at the 2006 Annual Meeting of the Chinese Meteorological Society.
王可丽, 钟强, 侯萍, 1994. 青藏高原地区云对地面有效辐射的影响Ⅰ. 综合分析[J]. 高原气象, (1):57-64. Wang K L, Zhong Q, Hou P, 1994. Effect of cloud on the surface efective radiation over the Qinghai-Xizang Plateau Ⅰ. Comprehensive Analysis[J]. Plateau Meteor, (1):57-64.
王可丽, 吴国雄, 江灏, 等, 2002. 青藏高原云-辐射-加热效应和南亚夏季风——1985年与1987年对比分析[J]. 气象学报, 60(2):173-180. Wang K L, Wu G X, Jiang H, et al, 2002. Cloud-radition-heating effect over the Tibetan Plaetau and summer monsoon of the South Asian[J]. Acta Meteor Sin, 60(2):173-180.
王艺, 伯玥, 王澄海, 2016. 青藏高原中东部云量变化与气温的不对称升高[J]. 高原气象, 35(4):908-919. Wang Y, Bo Y, Wang C H, 2016. Relations of cloud amount to asymmetric diurnal temperature change in central and eastern Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(4):908-919. DOI:10. 7522/j. issn. 1000-0534. 2015. 00033.
吴国雄, 2004. 我国青藏高原气候动力学研究的近期进展[J]. 第四纪研究, 24(1):1-9. Wu G X, 2004. Recent progress in the study of the Qinghai-Xizang Plateau climate dynamics in China[J]. Quat Sci, 24(1):1-9.
武荣盛, 马耀明, 2010. 青藏高原不同地区辐射特征对比分析[J]. 高原气象, 29(2):251-259. Wu R S, Ma Y M, 2010. Comparative analyses on radiation characteristics in different areas over the Tibet Plateau[J]. Plateau Meteor, 29(2):251-259.
吴晓, 2014. 从FY-4静止气象卫星估算晴空地表下行长波辐射通量的反演模式[J]. 气候与环境研究, 19(3):362-370. Wu X, 2014. Retrieval model for estimating clear-sky downward longwave radiation at the surface from the FY-4 geostationary satellite[J]. Climatic Environ Res, 19(3):362-370.
谢志鹏, 胡泽勇, 刘火霖, 等, 2017. 陆面模式CLM4. 5对青藏高原高寒草甸地表能量交换模拟性能的评估[J]. 高原气象, 36(1):1-12. Xie Z P, Hu Z Y, Liu H L, et al, 2017. Evaluation of the surface energy exchange simulation of land surface model CLM4. 5 in alpine meadow over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(1):1-12. DOI:10. 7522/j. issn. 1000-0534. 2016. 00012.
徐祥德, 赵天良, 施晓晖, 等, 2015. 青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J]. 气象学报, 73(1):20-35. Xu X D, Zhao T L, Shi X H, et al, 2015. A study of the role of the Tibetan Plateau's thermal forcing in modulating rainband and moisture transport in eastern China[J]. Acta Meteor Sin, 73(1):20-35.
叶笃正, 1979. 青藏高原气象学[M]. 北京:科学出版社. Ye D Z, 1979. Meteorology of the Qinghai-Tibet Plateau[M]. Beijing:Science Press.
周娟, 文军, 王欣, 等, 2017. 青藏高原季风演变及其与土壤湿度的相关分析[J]. 高原气象, 36(1):45-56. Zhou J, Wen J, Wang X, et al, 2017. Analysis of the Qinghai-Xizang Plateau monsoon evolution and its correlation with soil moisture[J]. Plateau Meteor, 36(1):45-56. DOI:10. 7522/j. issn. 1000-0534. 2016. 00003.
周利敏, 陈海山, 彭丽霞, 等, 2016. 青藏高原冬春雪深年代际变化与南亚高压可能联系[J]. 高原气象, 35(1):13-23. Zhou L M, Chen H S, Peng L X, et al, 2016. Possible connection between interdecadal variation of snow depth in winter and spring over Qinghai-Xizang Plateau and South Asia High in summer[J]. Plateau Meteor, 35(1):13-23. DOI:10. 7522/j. issn. 1000-0534. 2014. 00152.
朱乾根, 林锦瑞, 寿绍文, 等, 2007. 天气学原理和方法[M]. 北京:气象出版社. Zhu Q G, Lin J R, Shou C W, et al, 2007. Synoptic principles and methods[M]. Beijing:China Meteorological Press.
[1] 葛骏, 余晔, 李振朝, 解晋, 刘川, 昝蓓蕾. 青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J]. 高原气象, 2016, 35(3): 608-620.
[2] 冯璐, 仲雷, 马耀明, 傅云飞, 邹宓君. 基于土壤温湿度观测资料估算藏北高原地区土壤热通量[J]. 高原气象, 2016, 35(2): 297-308.
[3] 黄鹤, 王佳, 刘爱霞, 刘寿东, 冯帅. TJ-WRF逐时地面太阳辐射的预报订正[J]. 高原气象, 2015, 34(5): 1445-1451.
[4] 张驰, 范广洲, 马柱国, 程炳岩, 赵天保, 冯锦明, 王鹤松. 半干旱区典型下垫面反照率特征的初步分析[J]. 高原气象, 2015, 34(4): 1029-1040.
[5] 何晓凤, 周荣卫, 申彦波, 石磊. 基于WRF模式的太阳辐射预报初步试验研究[J]. , 2015, 34(2): 463-469.
[6] 黄治勇, 周志敏, 徐桂荣, 张文刚, 王钰. 风廓线雷达和地基微波辐射计在冰雹天气监测中的应用[J]. 高原气象, 2015, 34(1): 269-278.
[7] 张中琼, 吴青柏, 刘永智, 陈继. 沥青路面能量平衡特征分析[J]. , 2014, 33(6): 1705-1711.
[8] 彭继达, 程兴宏, 孙治安, 申彦波, 梁宏. 两种不同初始场对太阳辐射模拟效果的影响[J]. , 2014, 33(5): 1352-1362.
[9] 金莉莉, 何清, 李振杰, 买买提艾力·买买提依明, 缪启龙. 沙尘对南疆沙漠腹地太阳辐射的影响[J]. , 2014, 33(5): 1403-1410.
[10] 李矜霄, 何萍, 钟瑞, 李宏波. 近50年云贵高原楚雄市日照时数变化特征及其成因分析[J]. 高原气象, 2014, 33(2): 407-412.
[11] 闭建荣, 黄建平, 高中明, 史晋森, 马越界, 张武. 民勤地区紫外辐射的观测与模拟研究[J]. 高原气象, 2014, 33(2): 413-422.
[12] 谷晓平;袁淑杰*;史岚;康为民;缪启龙;邱新法. 基于DEM的复杂地形下太阳散射辐射分布式模拟——以贵州高原为例[J]. 高原气象, 2009, 28(1): 143-150.
[13] 权维俊;陈洪滨;高燕虎;郭文利;刘勇洪. 上甸子大气本底站太阳辐射观测数据的质量评价[J]. 高原气象, 2009, 28(1): 136-142.
[14] 黄安宁;张耀存. 不同辐射传输方案对P-σ RCM9区域气候模式性能的影响[J]. 高原气象, 2009, 28(1): 1-11.
[15] 刘勇洪, 权维俊, 夏祥鳌, 郭文利. 基于MODTRAN模式与卫星资料的晴空净太阳辐射模拟[J]. 高原气象, 2008, 27(6): 1410-1415.
img

QQ群聊

img

官方微信