Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (1): 137-147    DOI: 10.7522/j.issn.1000-0534.2017.00032
论文     
冬春季昆明准静止锋与云贵高原地形的关系
段旭1, 段玮1, 邢冬1, 张亚男2
1. 云南省气象科学研究所, 云南 昆明 650034;
2. 云南大学, 云南 昆明 650500
The Relationship between Kunming Quasi-stationary Front and Yunnan-Guizhou Plateau Terrain
DUAN Xu1, DUAN Wei1, XING Dong1, ZHANG Yanan2
1. Yunnan Institute of Meteorology Sciences, Kunming 650034, Yunnan, China;
2. Yunnan University, Kunming 650021, Yunnan, China
 全文: PDF(3382 KB)  
摘要: 利用1961-2010年地面气象观测数据、2008年1月10日至2月15日和2013年12月10-20日ERA-Interim 0.125°×0.125°再分析数据以及DEM地形高度数据,研究了昆明准静止锋(Kunming Quasi-Stationary Front,KQSF)位置、云贵高原地形和锋面附近大气要素三者之间的关系。研究结果表明:(1)云贵高原以乌蒙山脉(103°E)分为东、西两部,云贵高原东部地区昆明准静止锋出现的频次为61.5%,西部地区出现频次为38.5%,大部分冷空气被阻挡在了云贵高原东部地区,仅有少部分较强冷空气能越过乌蒙山脉进入云贵高原西部,高原大地形对冷空气的阻滞作用显著;(2)昆明准静止锋的进退与锋面前后地面温压场关系有较好的相关性,锋后冷气团越强、锋前暖气团越弱,锋面位置越偏西,反之越偏东,其相关的显著性主要体现在云贵高原西部,而在高原东部地区,地形作用降低了锋面位置与温压场的相关性;(3)高原地形阻挡作用使冷空气移动速度缓慢甚至停滞而形成准静止锋,抬升作用使局地近地层形成顺时针的次级环流,导致逆温层的出现,一旦冷空气越过高原,抬升作用减弱,逆温层消失;(4)东西风零线能较好地描述锋面位置和冷气团厚度,体现了KQSF呈准南北向和云贵高原地区的冷空气由东向西路径特征;(5)锋后冷高压的位势高度可表示冷气团的厚度,在云贵高原东部锋面位置取决于冷气团的厚度,当锋面到达云贵高原西部后,地形的阻挡作用显著减弱和消失,锋面位置取决于冷暖气团之间势力的强弱对比。
关键词: 云贵高原大地形昆明准静止锋锋面位置冷气团厚度阻挡和抬升作用    
Abstract: Using ground meteorological observation data from 1961 to 2010, ERA-Interim reanalysis data from January 10 to February 15, 2008 and December 10 to 20, 2013 and terrain elevation data of digital elevation model(DEM), the relationships of Yunnan-Guizhou Plateau topography, position of Kunming quasi-stationary front(KQSF) and meteorological elements near the front were analyzed. The main results are as follows:(1) The Yunnan-Guizhou Plateau is divided into the eastern and the western in Wumeng Mountains (103°E). The KQSF present frequency is 61.5% in the eastern area of Yunnan-Guizhou Plateau, the frequency of the western region is 38.5%. Most of the activity of cold air is blocked in the eastern area of Yunnan-Guizhou Plateau. Only a small part of the strong cold air activity can across Wumeng Mountains, and get into the western area of Yunnan-Guizhou Plateau. The effect of plateau topography on cold air activity is significant. (2) There is a good correlation between the advance (retreat) of KQSF and the temperature and pressure field before (after) the frontline. The stronger the cold air mass after KQSF, the weaker the warm air mass before KQSF, the KQSF position is more westerly. On the contrary, the KQSF position is more easterly. The significant correlation is mainly reflected in the western area of Yunnan-Guizhou Plateau. The effect of terrain reduced the correlation in the western area of Yunnan-Guizhou Plateau. (3) Blocking effect of plateau topography makes cold air activities moving slowly, or even stagnation and leads to the formation of quasi stationary front. Uplift effect of plateau topography results in the formation of clockwise secondary circulation in local low layer, leading to the emergence of the inversion layer. Once the lifting effect is weakened when the cold air passes over the plateau, the inversion layer will disappear. (4) The zero line of zonal wind can describe the front position and the cold air mass thickness, which illustrates that the distribution of KQFS is quasi-North-South. And characteristics of cold air path is from east to west. (5)The potential height after front can indicate the thickness of the air mass. In the eastern part of the Yunnan-Guizhou Plateau, the frontline position depends on the thickness of the cold air mass. In the eastern part, the frontline position depends on contrasted dynamics between the cold and warm air mass.
Key words: Yunnan-Guizhou Plateau    Kunming quasi-stationary front    the frontline position    air mass thickness    blocking and uplifting effect
收稿日期: 2017-01-23 出版日期: 2018-02-20
ZTFLH:  P441  
基金资助: 国家自然科学基金项目(41365006,41665004,41205067);云南省科技人才和平台计划项目(2017HB040)
通讯作者: 段玮.E-mail:duanwain@hotmail.com     E-mail: duanwain@hotmail.com
作者简介: 段旭(1960-),男,云南昆明人,正研级高工,主要从事天气和气候研究.E-mail:ynmodx@sina.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
段旭
段玮
邢冬
张亚男

引用本文:

段旭, 段玮, 邢冬, 张亚男. 冬春季昆明准静止锋与云贵高原地形的关系[J]. 高原气象, 2018, 37(1): 137-147.

DUAN Xu, DUAN Wei, XING Dong, ZHANG Yanan. The Relationship between Kunming Quasi-stationary Front and Yunnan-Guizhou Plateau Terrain. PLATEAU METEOROLOGY, 2018, 37(1): 137-147.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00032        http://www.gyqx.ac.cn/CN/Y2018/V37/I1/137

Jong P C, 1950. The Kunming quasi-stationary front[J]. J Chinese Geophys Soc, 17(2):87-103.
杜正静, 丁治英, 张书余, 2007. 2001年1月滇黔准静止锋在演变过程中的结构及大气环流特征分析[J]. 热带气象学报, 23(3):284-292. Du Z J, Ding Z Y, Zhang S Y, 2007. Analysis of atmospheric circulation and structure of Yunnan-Guizhou Quasi-Stationary Front[J]. J Trop Meteor, 23(3):284-292.
杜正静, 熊方, 何玉龙, 等, 2009. 贵州严重冰冻天气过程典型模型及环流特征分析[J]. 贵州气象, 33(1):7-10. Du Z J, Xiong F, He Y L, et al, 2009. Typical model and circulation characteristics of severe freezing weather process in Guizhou[J]. J Guizhou Meteor, 33(1):7-10.
段旭, 段玮, 邢冬, 2017. 昆明准静止锋客观判识方法研究[J]. 气象学报, 75(5):811-822. Duan X, Duan W, Xing D, 2017. An objective methods of front identification for Kunming Quasi-Stationary Front[J]. Acta Meteor Sinica, 75(5):811-822.
段旭, 李英, 孙晓冬, 2002. 昆明准静止锋结构[J]. 高原气象, 21(2):205-209. Duan X, Li Y, Sun X D, 2002. Structure of Kunming Quasi-stationary Front[J]. Plateau Meteor, 21(2):205-209.
段旭, 陶云, 2009a. 2008年1月中国南方地区罕见低温冰雪天气的气候特征及其成因[J]. 云南大学学报, 31(5):477-483. Duan X, Tao Y, 2009a. Climatic characteristics and cause of rare low temperature snow and ice weather in southern China in January 2008[J]. Journal of Yunnan University, 31(5):477-483.
段旭, 许美玲, 王曼, 等, 2009b. 云南省精细化天气预报技术研究与应用[M]. 北京:气象出版社, 58-61. Duan X, Xu M L, Wang M, et al, 2009b. Research and application of fine weather forecast technology in Yunnan Province[M]. Beijing:Meteorological Press, 58-61.
樊平, 1956. 昆明准静止锋[J]. 天气月刊, 6(增刊1):14-16. Fan P, 1956. Kunming Quasi-Stationary Front[J]. J Wea, 6(suppl1):14-16.
顾震潮, 1951. 西藏高原对东亚环流的影响和它的重要性[J]. 气象学报, 22(1):283-303. Gu Z C, 1951. Effect of Tibet Plateau on the East Asian circulation and its importance[J]. Scientia Sinica Mathematica, 2(3):283-303.
李登文, 杨静, 吴兴洋, 2011. 2008年低温冰冻雨雪灾害天气过程中贵州电线积冰气象条件分析[J]. 气象, 37(2):161-169. Li D W, Yang J, Wu X Y, 2011. Discussion on genesis of wire icing in Guizhou during the freezing rain and snow storm in January 2008[J]. Meteor Mon, 37(2):161-169.
廖留峰, 谷小平, 惠小英, 2015. 乌蒙山区3种大气可降水量反演法的异同[J]. 气象科技, 43(3):387-392. Liao L F, Gu X P, Hui X Y, 2015. Similarities and differences of three methods for retrieving atmospheric precipitable water in Wumeng Mountain Area[J]. Meteor Sci Technol, 43(3):387-392.
林宗桂, 林墨, 林开平, 等, 2014. 一股高原南下弱冷空气触发准静止锋对流过程分析[J]. 热带气象学报, 30(1):111-118. Lin Z G, Lin M, Lin K P, et al, 2014. A convective process of Quasi-Stationary Front triggered by southward-moving weak cold air from Tibetan plateau[J]. J Trop Meteor, 30(1):111-118.
苗春生, 赵文宁, 王坚红, 等, 2014. 近53 a云南东部春季旱涝及其环流距平波列影响[J]. 干旱区研究, 31(2):250-260. Miao C S, Zhao W N, Wang J H, et al, 2014. Circulation anomaly wave effects of Eastern Yunnan a spring flood and drought near 53 years[J]. Arid Zone Res, 31(2):250-260.
孙建华, 赵思雄, 2008. 2008年初南方雨雪冰冻灾害天气静止锋与层结分析[J]. 气候与环境研究, 13(4):368-384. Sun J H, Zhao S X, 2008. Quasi-stationary front and stratification structure of the freezing rain and snow storm over Southern China in January 2008[J]. Climatic Environ Res, 13(4):368-384.
杨贵名, 孔期, 毛冬艳, 等, 2008. 2008年初"低温雨雪冰冻"灾害天气的持续性原因分析[J]. 气象学报, 66(5):836-849. Yang G M, Kong Q, Mao D Y, et al, 2008. Analysis of the long-lasting cryogenic freezing rain andsnow weather in the beginning of 2008[J]. Acta Meteor Sinica, 66(5):836-849.
杨鉴初, 陶诗言, 叶笃正, 等, 1960. 西藏高原气象学[M]. 北京:科学出版社, 280. Yang J C, Tao S Y, Ye D Z, et al, 1960. Xizang Tibet Plateau meteorology[M]. Beijing:Science Press, 280.
杨素雨, 李华宏, 严华生, 等, 2012. 2011年初云南东部极端低温冰冻灾害天气气候特征及成因分析[J]. 成都信息工程学院学报, 31(2):250-260. Yang S Y, Li H H, Yan H S, et al, 2012. Climatic characteristics and cause analysis of extreme low temperature freezing weather weather in eastern Yunnan in early 2011[J]. Journal of Chengdu University of information technology, 31(2):250-260.
叶笃正, 高由禧, 1979. 青藏高原气象学[M]. 北京:科学出版社, 39-40. Ye D Z, Gao Y X, 1979. The Qinghai-Tibet Plateau meteorology[M]. Beijing:Science Press, 39-40.
尤红, 周泓, 白学文, 等, 2013a. 2011年3月云南连续两次强倒春寒天气过程对比分析[J]. 暴雨灾害, 32(2):167-175. You H, Zhou H, Bai X W, et al, 2013a. Comparative analysis of continuous two strong coldness processes in late spring in March 2011 in Yunnan[J]. Torrential Rain Disaster, 32(2):167-175.
尤红, 周泓, 杨红, 等, 2013b. 云南倒春寒天气过程的分析研究[J]. 气象, 39(6):738-748. You H, Zhou H, Yang H, et al, 2013b. Analysis on the late spring coldness processes in Yunnan[J]. Meteor Mon, 39(6):738-748.
张精华, 张万诚, 郑建萌, 等, 2016. 1970-2009年冬季昆明准静止锋的变化特征及其影响分析[J]. 高原气象, 35(5):1298-1306. Zhang J H, Zhang W C, Zheng J M, et al, 2016. Variation of Kunming quasi-stationary front and its effect analysis in winter during 1970-2009[J]. Plateau Meteor, 35(5):1298-1306. DOI:10. 7522/j. issn. 1000-0534. 2015. 00042.
周秉根, 陈建业, 何俊杰, 等, 2012. 2009-2010年冬春季节我国西南地区持续干旱的成因分析[J]. 安徽师范大学学报(自然科学版), 35(1):53-55. Zhou B G, Chen J Y, He J J, et al, 2012. Causes analysis of winter season persistent drought in Southwest China in 2009-2010[J]. Journal of Anhui Nnormal University (Natural Science), 35(1):53-55.
[1] 刘晶, 李娜, 陈春艳. 新疆北部一次暖区暴雪过程锋面结构及中尺度云团分析[J]. 高原气象, 2018, 37(1): 158-166.
[2] 王宗敏, 李江波, 王福侠, 林朝旭. 东北冷涡暴雨的特点及其非对称结构特征[J]. 高原气象, 2015, 34(6): 1721-1731.
[3] 林志强. 南支槽的客观识别方法及其气候特征[J]. 高原气象, 2015, 34(3): 684-689.
[4] 刘勇, 王楠, 刘黎平. 陕西两次阵风锋的多普勒雷达和自动气象站资料分析[J]. 高原气象, 2007, 26(2): 380-387.
[5] 吕雅琼, 巩远发. 2001及2003年夏季青藏高原及附近大气热源(汇)的变化特征[J]. 高原气象, 2006, 25(2): 195-202.
[6] 姚秀萍, 刘还珠, 赵声蓉. 利用TBB资料对西太平洋副热带高压特征的分析和描述[J]. 高原气象, 2005, 24(2): 143-151.
[7] 蒋后硕, 吕克利 . 高、低空急流中的锢囚锋环流 [J]. 高原气象, 2000, 19(3): 265-276.
[8] 蒋后硕, 吕克利. 切变气流中地形强迫激发的非线性长波[J]. 高原气象, 1998, 17(3): 231-244.
[9] 杨洋, 俞佚名. 一次西南静止锋的准地转锋生函数分析[J]. 高原气象, 1995, 14(3): 365-372.