Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (1): 167-184    DOI: 10.7522/j.issn.1000-0534.2017.00041
论文     
关中盛夏强湿雷暴环境条件与云微物理特征
张雅斌1, 黄蕾1, 毛冬艳2, 杨睿3
1. 陕西省西安市气象台, 陕西 西安 710016;
2. 国家气象中心, 北京 100081;
3. 陕西省西安市气象局, 陕西 西安 710016
Characteristics of Environment Condition and Cloud Microphysics during Heavy Wet Thunderstorms at Guanzhong in Mid Summer
ZHANG Yabin1, HUANG Lei1, MAO Dongyan2, YANG Rui3
1. Xi'an Meteorological Observatory of Shaanxi Province, Xi'an 710016, Shaanxi, China;
2. National Meteorological Centre, Beijing 100081, China;
3. Xi'an Meteorological Bureau of Shaanxi Province, Xi'an 710016, Shaanxi, China
 全文: PDF(40456 KB)  
摘要: 利用NCEP、地闪、云图和WRF模式等资料,分析总结2010年8月11-12日和2011年8月15-16日关中近10年地闪次数最多的两次湿雷暴天气特征。结果表明:欧亚中高纬为两槽一脊环流形势,西太平洋副热带高压(下称西太副高)稳定少动控制陕西,关中低层受切变线直接影响,有利于盛夏强湿雷暴发生。北部高层冷平流和正湿位涡向南下滑,陕北能量锋区南压,陕西西南部低层暖舌向东北方向伸展,关中不稳定层结加强,最大对流有效位能超过3 000 J·kg-1,垂直上升运动深厚,是强湿雷暴发生的有利环境条件。西太副高偏强偏西,"上干下湿"层结不稳定,近地层高温高湿,对流有效位能偏大,垂直上升运动中心和对流云顶偏高,导致强湿雷暴比普通暴雨过程地闪明显偏多。关中地闪与强降水二者中心接近,密集区与低层高位温区走向一致,主要分布在50 m-2·s-2以下正螺旋度区。强湿雷暴不同阶段对流云团与地闪分布差异明显。发展阶段,MCS冷云罩显著扩大,北侧TBB大梯度区呈反气旋北凸,对流云顶和地闪密集区不一致,地闪趋于集中、频次增大;成熟阶段,TBB中心降至-76℃以下,地闪密集区与对流云顶基本重合,密度和频次达到过程最大,正闪分散在负闪密集区西南方向;消散阶段,地闪密集区与云顶逐渐分离,明显减弱、分散,正闪相对活跃。WRF输出的-20~-10℃层之间雪、霰粒子质量混合比与地闪频数呈正相关变化,可有效指示关中地闪发展趋势。雪粒子落区相对连续、在地闪周围,霰粒子相对分散、中心靠近地闪密集区。雷暴成熟阶段,雪、霰粒子分别在8~16 km、6~12 km高度附近,密集区与显著上升运动区一致。上升运动偏强时,地闪平均电流和雨强偏大,与雪粒子空间相关性明显;上升运动偏弱时,地闪平均电流和雨强偏小,与霰粒子相关性明显。地闪频次峰值出现在对流云发展最高时段,频次成倍增大之后3 h内冷云面积显著增大至峰值,随后周边出现过程最大雨强。
关键词: 雷暴地闪环境条件冰相粒子WRF模式    
Abstract: Spatial and temporal distribution of cloud-to-ground (CG) flashes and mesoscale characteristics of two heavy wet thunderstorm processes with most CG lightning in the last 10 years at Guanzhong, which occurred respectively on August 11-12, 2010 (the "0811") and August 15-16, 2011(the "0815"), were analyzed by using NCEP reanalysis, CG lightning, satellite, Radar and WRF data. The results show that heavy wet thunderstorms at Guanzhong occurred favorably under the circulation background of two-through and one-ridge in Eurasia mid-high latitude, and Shaanxi province is controlled by the stable West Pacific Subtropical High. Low level shear line is the directly influence system. During thunderstorm, cold advection on upper levels and moist barotropic potential vorticity move southward, the energy frontal zone over northern Shaanxi move southward and invade the unstable stratification environment over central and southern Shaanxi. The low-level warm tongue over southwest of Shaanxi extend to the northeast. With unstable stratification increasing and high humidity at the early stage, the unstable energy at Guanzhong increases significantly with CAPE (Convective Available Potential Energy) above 3 000 J·kg-1. The vertical ascending motion is strong and deep. Aforementioned characteristics provide favorable environmental conditions for strong wet thunderstorm. The West Pacific Subtropical High develops strongly and westward, unstable stratification with dry air at high levels and wet at low levels, high temperature and humidity near surface layer, obviously CAPE, relatively high altitudes of vertical motion center and convective cloud, above factors are important reasons for that heavy wet thunderstorms have more CG flashes than ordinary rainstorms. The accumulated areas of CG flashes are consistent with the high potential temperature areas at lower levels, which also mainly located near positive helicity that below 50 m-2·s-2. There is a significant difference between the distribution pattern of TBB and CG flashes at different stages of heavy wet thunderstorm. At the developing stage, the oval cold-cloud cap of MCS had expanded significantly, the high gradient area of TBB bended northward with anticyclone shape. Convective cloud tops did not match the accumulated areas of the aggregating and increasing CG flashes. At the mature stage, the accumulated areas of CG flashes were basically coincidence with the convective cloud tops, the density and frequency of CG flashes reached maxima. Meanwhile, the center temperature of TBB reduced below to -76℃ and reached minimum, positive CG flashes scattered near southwest of the areas that accumulated negative CG flashes and also reached the maximum frequency of whole process. At the dissipating stage, the CG flashes weakened and dispersed obviously and its accumulated areas gradually separated from the convective cloud tops, but positive CG flashes were relatively active. Snow and graupel mixing ratio at -20~-10℃ layers is an effective indicator to flash trend. There are positive correlations between the number of particles and the frequency of CG flashes. Snow particle areas are relatively continuous and around the flash. Graupel particle areas are relatively dispersed and closer to the center of CG flash areas. At the mature stage, the vertical distribution of snow particle ranged from 8 to 16 kilometers, while graupel ranged from 6 to 12 kilometers. Accumulated areas of above particles corresponded to areas with large vertical velocity. With the significant increase of convection and vertical ascending motion, average current of CG flashes and rainfall intensity are increased, and the snow particles have obvious correlation with CG flash activity. When the vertical ascending motion become weak, average current of CG flashes and rainfall intensity will become small and have obvious correlation with graupel. Rate of CG flashes peak when convective cloud develop to the highest altitude. After CG flash doubling, cold-cloud area reach to peak in the next 3 hours and the maximum rainfall happen subsequently.
Key words: Thunderstorm    Cloud-to-Ground lightning    environment conditions    ice phase particles    WRF model
收稿日期: 2017-01-19 出版日期: 2018-02-20
ZTFLH:  P49  
基金资助: 高原与盆地暴雨旱涝灾害四川省重点实验室科技发展基金项目(SZKT2017002);陕西省气象局青年基金项目(2017Y-25);中国气象局预报员专项(CMAYBY2017-074)
作者简介: 张雅斌(1976-),男,陕西宝鸡人,高级工程师,主要从事天气预报、信号与信息处理研究.E-mail:ddusa@yeah.net
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张雅斌
黄蕾
毛冬艳
杨睿

引用本文:

张雅斌, 黄蕾, 毛冬艳, 杨睿. 关中盛夏强湿雷暴环境条件与云微物理特征[J]. 高原气象, 2018, 37(1): 167-184.

ZHANG Yabin, HUANG Lei, MAO Dongyan, YANG Rui. Characteristics of Environment Condition and Cloud Microphysics during Heavy Wet Thunderstorms at Guanzhong in Mid Summer. PLATEAU METEOROLOGY, 2018, 37(1): 167-184.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00041        http://www.gyqx.ac.cn/CN/Y2018/V37/I1/167

Carey L D, Murphy M J, Mccormick T L, et al, 2005. Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system[J]. J Geophy Res, 110(3):480-496.
Juan F C, Emiliano H, Ricardo G H, et al, 2006. A 3-year study of cloud-ground lightning flash characteristics of mesoscale convective systems over the Western Mediterranean Sea[J]. Atmos Res, 79:89-107.
Manuel M, Jesus R, Fernando P, et al, 2015. Atmospheric background associated with severe lightning thunderstorms in Central Spain[J]. International Journal of Climatology, 35:558-569.
McCaul J E W, Goodman S J, LaCasse K M, et al, 2009. Forecasting lightning threat using cloud-resolving model simulations[J]. Wea Forecasting, 24 (3):709-729.
McCaul J E W, LaCasse K, Goodman S J, et al, 2006. Use of high resolution WRF simulations to forecast lightning threat[C]//Preprints of the 23rd Conference on Severe Local Storms. St. Missouri, CD-ROM, AMS.
Nicolau P, Tomeu R, Joan B, et al, 2007. Lightning and Precipitation relationship in summer thunderstorms:Case studies in the North Western Mediterranean region[J]. Atmos Res, 85:159-170.
Niu L T, Li C E, Wang Y, et al, 2014. Analysis of cold eddy squall line weather characteristics in middle region of Shanxi[J]. J Shaanxi Meteor, 4:533-542.
Saunders C P R, Peck S L, 1998. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions[J]. J Geophys Res, 103 (D12):13949-13956.
Zajac B A, Rutledge S A, 2001. Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999[J]. Mon Wea Rev, 129:999-1019.
Zepka G S, Pinto O, Saraiva A C V, 2013. Lightning forecasting in southeastern Brazil using the WRF model[J]. Atmos Res, 135-136(1):344-362.
冯桂力, 郄秀书, 袁铁, 等, 2006. 一次冷涡天气系统中雹暴过程的地闪特征分析[J]. 气象学报, 64(2):211-220. Feng G L, Qie X S, Yuan T, et al, 2006. A case study of cloud-to-ground lightning activities in hailstorms under cold eddy synoptic situation[J]. Acta Meteor Sinica, 64(2):211-220.
郭凤霞, 孙京, 2012. 雷暴起电机制及其数值模拟的回顾与进展[J]. 高原气象, 31(3):862-874. Guo F X, Sun J, 2012. Review and progress of thunderstorm electrification mechanisms and numerical modelings[J]. Plateau Meteor, 31(3):862-874.
黄蕾, 周筠珺, 谷娟, 等, 2015. 雷暴中雷电活动与WRF模式微物理和动力模拟量的对比研究[J]. 大气科学, 39 (6):1095-1110. Huang L, Zhou Y J, Gu J, et al, 2015. Comparative study on the lightning activities and microphysical and dynamical quantities in a thunderstorm simulated by the Weather Research and Forecasting model[J]. Chinese J Atmos Sci, 39 (6):1095-1110.
孔燕燕, 沈建国, 2011. 强雷暴预报[M]. 北京:气象出版社, 1-13. Kong Y Y, Shen J G, 2011. Forecast of severe storms[M]. Beijing:China Meteorological Press, 1-13.
梁梦雪, 郭凤霞, 吴鑫, 等, 2016. 冰相粒子的相对增长对非感应起电影响的模拟研究[J]. 高原气象, 35(2):538-547. Liang M X, Guo F X, Wu X, et al, 2016. Numerical simulation of influence of relative growth of ice and graupel on noninductive electrification[J]. Plateau Meteor, 35(2):538-547. DOI:10. 7522/j. issn. 1000-0534. 2015. 00013.
刘冬霞, 郄秀书, 冯桂力, 2010. 华北一次中尺度对流系统中的闪电活动特征及其与雷暴动力过程的关系研究[J]. 大气科学, 34(1):95-104. Liu D X, Qie X S, Feng G L, 2010. Evolution characteristics of the lightning and the relation with dynamical structure in a mesoscale convective system over North China[J]. Chinese J Atmos Sci, 34(1):95-104.
罗慧, 刘勇, 冯桂力, 等, 2009. 陕西中部一次超强雷暴天气的中尺度特征及成因分析[J]. 高原气象, 28(4):816-826. Luo H, Liu Y, Feng G L, et al, 2009. Mesoscale characteristics of a super thunderstorm weather in central shaanxi province and its cause analysis[J]. Plateau Meteor, 28(4):816-826.
蒙伟光, 易燕明, 杨兆礼, 等, 2008. 广州地区雷暴过程云一地闪特征及其环境条件[J]. 应用气象学报, 19(5):611-619. Meng W G, Yi Y M, Yang Z L, et al, 2008. Thunderstorm cloud to ground lightning characteristics in the contiguous Guangzhou City and the influences of local environmental conditions[J]. J Appl Meteor Sci, 19(5):611-619.
慕建利, 李泽椿, 谌芸, 2012. 一次强暴雨过程地闪活动特征与中尺度对流系统和强降水的关系[J]. 气象, 38(1):56-65. Mu J L, Li Z C, Chen Y, 2012. Characteristics of ground lightning and relationships of mesoscale convective systems and heavy rainfall in a strong rainstorm[J]. Meteor Mon, 38(1):56-65.
牛乐田, 李春蛾, 王英, 等, 2014. 陕西中部一次冷涡飑线天气特征分析[J]. 陕西气象, 4:7-10. Niu L T, Li C E, Wang Y, et al, 2014. Analysis of the characteristics of a cold vortex squall line in central Shaanxi[J]. J Shaanxi Meteor, 4:7-10.
潘留杰, 张宏芳, 侯建忠, 等, 2015. 弱天气系统强迫下黄土高原强对流云的初生及演变[J]. 高原气象, 34(4):982-990. Pan L J, Zhang H F, Hou J Z, et al, 2015. Initiation and evolution of storm over loess plateau for weak synoptic forcing situations[J]. Plateau Meteor, 34(4):982-990. DOI:10. 7522/j. issn. 1000-0534. 2014. 00015.
郄秀书, 刘冬霞, 孙竹玲, 2014. 闪电气象学研究进展[J]. 气象学报, 72(5):1054-1065. Qie X S, Liu D X, Sun Z L, 2014. Recent advances in research of lightning meteorology[J]. Acta Meteor Sinica, 72(5):1054-1065.
寿绍文, 励申申, 寿亦萱, 等, 2012. 中尺度大气动力学[M]. 北京:气象出版社, 284-290. Shou S W, Li S S, Shou Y X, et al, 2012. Mesoscale synoptic dynamics[M]. Beijing:China Meteorological Press, 284-290.
孙安平, 言穆弘, 张义军, 2002. 三维强风暴动力-电耦合数值模拟研究I:模式及其电过程参数化方案[J]. 气象学报, 60(6):722-731. Sun A P, Yan M H, Zhang Y J, 2002. Numerical study of thunderstorm electrification with a three-dimensional dynamics and electrification coupled model. I:Model description and parameterization of electrical process[J]. Acta Meteor Sinica, 60 (6):722-731.
王芳, 肖稳安, 雷恒池, 等, 2009. 吉林地区一次雷暴云个例电和云微物理特征的模拟分析[J]. 高原气象, 28(2):385-394. Wang F, Xiao W A, Lei H C, et al, 2009. Numerical simulation of electricity characteristic of a thunderstorm case in summer of Jilin[J]. Plateau Meteor, 28(2):385-394.
王天义, 朱克云, 张杰, 等, 2015. 拉萨一次热力雷暴的结构特征及数值模拟[J]. 高原气象, 34(5):1237-1248. Wang T Y, Zhu K Y, Zhang J, et al, 2015. Structural features and numerical simulation of a thermodynamic thunderstorm in Lhasa[J]. Plateau Meteor, 34(5):1237-1248. DOI:10. 7522/j. issn. 1000-0534. 2014. 00054.
王婷婷, 王迎春, 陈明轩, 2011. 北京地区干湿雷暴形成机制的对比分析[J]. 气象, 37(2):142-155. Wang T T, Wang Y C, Chen M X, 2011. Contrastive analysis of formation of dry and moist thunderstorms in Beijing[J]. Meteor Mon, 37(2):142-155.
肖湘卉, 武麦凤, 王旭仙, 等, 2012. 两次强对流天气的热力不稳定条件对比分析[J]. 陕西气象, 2:17-21. Xiao X H, Wu M F, Wang X X, et al, 2012. Contrastive analysis of thermal unstable conditions of two strong convective processes[J]. J Shaanxi Meteor, 2:17-21.
徐良韬, 张义军, 王飞, 等, 2012. 雷暴起电和放电物理过程在WRF模式中的耦合及初步检验[J]. 大气科学, 36 (5):1041-1052. Xu L T, Zhang Y J, Wang F, et al, 2012. Coupling of electrification and discharge processes with WRF model and its preliminary verification[J]. Chinese J Atmos Sci, 36(5):1041-1052.
许新田, 刘瑞芳, 郭大梅, 等, 2012. 陕西一次持续性强对流天气过程的成因分析[J]. 气象, 38(5):533-542. Xu X T, Liu R F, Guo D M, 2012. Cause analysis of a continuous severe convective weather in Shaanxi[J]. Meteor Mon, 38(5):533-542.
言穆弘, 郭昌明, 葛正谟, 1996. 积云动力和电过程二维模式研究-Ⅰ理论和模式[J]. 地球物理学报, 39(1):52-64. Yan M H, Guo C M, Ge Z M, 1996. Numerical study of cloud dynamic-electrification in an axisymmetric, time-dependent cloud model. I. Theory and model[J]. Chinese J Geophy, 39 (1):52-64.
袁铁, 郄秀书, 2010. 基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究[J]. 大气科学, 34(1):58-70. Yuan T, Qie X S, 2010. TRMM based study of lightning activity and its relationship with precipitation structure of a squall line in South China[J]. Chinese J Atmos Sci, 34(1):58-70.
张腾飞, 尹丽云, 张杰, 等, 2013. 云南两次中尺度对流雷暴系统演变和地闪特征[J]. 应用气象学报, 24(2):207-218. Zhang T F, Yin L Y, Zhang J, et al, 2013. Evolution and cloud-to-ground lightning features of two mesoscale convective thunder storm systems in Yunnan[J]. J Appl Meteor Sci, 24(2):207-218.
张廷龙, 杨静, 楚荣忠, 等, 2012. 平凉一次雷暴云内的降水粒子分布及其电学特征的探讨[J]. 高原气象, 31(4):1091-1099. Zhang T L, Yang J, Chu R Z, et al, 2012. Distribution of precipitation particle and electrical characteristic of thunderstorm in Pingliang Region[J]. Plateau Meteor, 31(4):1091-1099.
张雅斌, 马晓华, 冉令坤, 等, 2016. 关中地区两次初夏区域性暴雨过程特征分析[J]. 高原气象, 35(3):708-725. Zhang Y B, Ma X H, Ran L K, et al, 2016. Characteristic analysis on two regional rainstorms at Guanzhong in early summer[J]. Plateau Meteor, 35(3):708-725. DOI:10. 7522/j. issn. 1000-0534. 2015. 00014.
张义军, 言穆弘, 刘欣生, 1999. 雷暴中放电过程的模式研究[J]. 科学通报, 44(12):1322-1325. Zhang Y J, Yan M H, Liu X S, 1999. Simulating study of discharge process in the thunderstorm[J]. Chinese Science Bulletin, 44(12):1322-1325.
郑栋, 张义军, 吕伟涛, 等, 2005. 大气不稳定度参数与闪电活动的预报[J]. 高原气象, 24(2):196-202. Zheng D, Zhang Y J, Lü W T, et al, 2005. Atmospheric instablity parameters and forecasting of ligthning activity[J]. Plateau Meteor, 24 (2):196-202.
[1] 刘姝岩, 包云轩, 金建平, 刘诚, 许建明, 李建民, 黄建平. 重霾天气气溶胶辐射效应对近地面臭氧峰值的影响[J]. 高原气象, 2018, 37(1): 296-304.
[2] 常蕊, 申彦波, 郭鹏. 太阳能资源典型年挑选方法的适用性对比研究[J]. 高原气象, 2017, 36(6): 1713-1721.
[3] 石岚, 徐丽娜, 郝玉珠. 多模式风速融合预报应用研究[J]. 高原气象, 2017, 36(4): 1022-1028.
[4] 张双益, 胡非. 大气边界层与风力发电的相互作用研究综述[J]. 高原气象, 2017, 36(4): 1127-1137.
[5] 赖欣, 文军, 范广洲, 宋海清, 张永莉, 朱丽华, 王炳赟. 基于陆面数据同化系统改进中国区域土壤湿度的模拟研究[J]. 高原气象, 2017, 36(3): 776-787.
[6] 王越亚, 邵爱梅. SVD-En3DVar同化方法在一次飑线过程中的应用[J]. 高原气象, 2016, 35(3): 755-766.
[7] 尹继福, 郑有飞, 詹习武, 吴荣军, 刘吉成, 方莉, 关福来, 姚树然. 同化极轨卫星陆地产品对改善陆面模式模拟能力研究进展[J]. 高原气象, 2016, 35(1): 260-276.
[8] 李虎超, 邵爱梅, 何邓新, 王越亚. BP神经网络在估算模式非系统性预报误差中的应用[J]. 高原气象, 2015, 34(6): 1751-1757.
[9] 申彦波, 常蕊, 杜江, 程兴宏. 吐鲁番地区可利用太阳能资源分析[J]. , 2015, 34(2): 470-477.
[10] 王宝, 解福燕, 张自祥, 刘春学. 玉溪空气负氧离子预测模型的建立[J]. 高原气象, 2015, 34(1): 251-257.
[11] 辛渝, 陈洪武. XJRUC/CALMET及CALMET不同参数调整对达坂城—小草湖区风场预报影响[J]. , 2014, 33(6): 1674-1686.
[12] 李红英, 张晓煜, 王静, 郑广芬, 王素艳. 基于CI指数的宁夏干旱致灾因子特征指标分析[J]. , 2014, 33(4): 995-1001.
[13] 何邓新, 邵爱梅. 判断大气要素场相似度的相似面积比方法[J]. 高原气象, 2014, 33(3): 658-665.
[14] 李子良, 黄仪方. 重力惯性波及其不稳定——急流附近飞机颠簸产生的可能机制[J]. 高原气象, 2008, 27(4): 859-865.