Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (1): 185-196    DOI: 10.7522/j.issn.1000-0534.2017.00044
论文     
中国两级阶梯地势区域冰雹天气的环境物理量统计特征
曹艳察, 田付友, 郑永光, 盛杰
国家气象中心, 北京 100081
Statistical Characteristics of Environmental Parameters for Hail over the Two-Step Terrains of China
CAO Yancha, TIAN Fuyou, ZHENG Yongguang, SHENG Jie
National Meteorological Centre, Beijing 100081, China
 全文: PDF(4281 KB)  
摘要: 通过时空匹配2002-2010年逐年3月1日至9月30日中国海拔3 km以下地区671个国家站逐时冰雹观测资料和NCEP(National Centers for Environmental Prediction)FNL(Final Analysis)资料,以海拔1 km作为分界线划分为两个阶梯区域(简称两级阶梯,并把两个区域分别简称为一级阶梯和二级阶梯),对表征中国两级阶梯冰雹天气的水汽、热力和动力环境条件进行了统计分析。考虑气温0℃层高度对形成冰雹天气的影响,首先用0℃层高度对样本进行过滤,然后对两级阶梯冰雹天气的环境物理量特征进行统计和对比分析。结果表明,两级阶梯冰雹环境的水汽、热力和不稳定能量差异显著,一级阶梯冰雹往往出现在具有更不稳定的层结结构、更多不稳定能量、更多水汽含量以及更强的垂直风切变环境中。一级阶梯冰雹的整层可降水量集中在15~41 mm,二级阶梯则集中在6~30 mm,无冰雹出现在整层可降水量超过56 mm的环境中。两级阶梯超过50%的冰雹均出现在最有利抬升指数为负值的不稳定环境中,最优对流有效位能分布则表明,超过75%的冰雹均出现在具有一定不稳定能量的环境中;但当最有利抬升指数大于2.8℃时,两级阶梯均不会出现冰雹天气;两级阶梯超过50%的冰雹均出现在强的垂直温度递减率环境中。多物理量的高概率密度区更显著地揭示了两级阶梯冰雹天气所需的物理量分布差异。这些结果为两级阶梯冰雹天气的主客观潜势预报提供了客观的统计基础和依据。
关键词: 冰雹环境物理量两级阶梯统计特征    
Abstract: Based on the hourly hail observations of 671 stations and National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data from March 1 to September 30 during 2002-2010, the atmospheric environmental conditions for hail over the two-step terrain (shortly for first-step and second-step respectively) areas of China with altitude above sea level of 1 km as the dividing line were analyzed. The hourly hail data and NCEP FNL data were matched by employing a temporal-spatial matching method. Due to the close relationship between hail forming and the height of characteristic temperature layers, the samples were filtered by using height of 0℃ layer above the ground, and then the environmental parameters representing moisture content, instability, and triggers were carefully analyzed, and the scatter plots also were studied. The results show that the environmental moisture conditions, the instability and best convective available potential energy (CAPE) conditions favorable for hails over the two-steps were much different. The hails over the first-step always had stronger instability, more CAPE, more moisture, and stronger vertical wind shear. The main scopes of total precipitable water (PWAT) for hails over the first-step terrain was 15~41 mm, but for the second-step, it was 6~30 mm. Almost no hails reported as PWAT were greater than 56 mm over the two-steps. More than 50% hails over the two-steps occurred under negative best lifted index (BLI) environment. If characterized by best CAPE, the percentage was greater than 75%. No hail was expected when BLI is above 2.8℃ over the two-steps. If measured by the vertical temperature lapse rate (TLR), more than 50% hails happened under high TLR environments. The differences on environmental conditions favorable for hails over the two steps were revealed dramatically by the scatter plots and probability density of parameters. The results provide an objective basis for the subjective and objective hail potential forecasting over the two-step terrains in China.
Key words: Hail    two-step terrain    environmental parameters    statistical characteristics
收稿日期: 2017-03-13 出版日期: 2018-02-20
ZTFLH:  P463.21  
基金资助: 国家气象中心青年基金项目(Q201612);国家重点基础研究发展计划项目(2013CB430106);气象预报预测业务与科研结合专项(CMAHX20160601);环渤海区域科技协同创新基金项目(QYXM2016)
通讯作者: 田付友.E-mail:tianfy@cma.gov.cn     E-mail: tianfy@cma.gov.cn
作者简介: 曹艳察(1986-),女,河北石家庄人,工程师,主要从事强对流天气预报和研究.E-mail:caoych@cma.gov.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曹艳察
田付友
郑永光
盛杰

引用本文:

曹艳察, 田付友, 郑永光, 盛杰. 中国两级阶梯地势区域冰雹天气的环境物理量统计特征[J]. 高原气象, 2018, 37(1): 185-196.

CAO Yancha, TIAN Fuyou, ZHENG Yongguang, SHENG Jie. Statistical Characteristics of Environmental Parameters for Hail over the Two-Step Terrains of China. PLATEAU METEOROLOGY, 2018, 37(1): 185-196.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00044        http://www.gyqx.ac.cn/CN/Y2018/V37/I1/185

Bunkers M J, 2002. Vertical wind shear associated with left-moving supercells[J]. Wea Forecasting, 17(4):845-855.
Craven J P, Brooks H E, 2004. Baseline climatology of sounding derived parameters associated with deep moist convection[J]. National Weather Digest, 28:13-24.
Doswell Ⅲ C A, Brooks H E, Maddox R A, 1996. Flash flood forecasting:An ingredients-based methodology[J]. Wea Forecasting, 11(4):560-580.
Johns R H, Doswell Ⅲ C A, 1992. Severe local storms forecasting[J]. Wea Forecasting, 7(4):588-612.
Johnson A W, Sugden K E, 2014. Evaluation of sounding-derived thermodynamic and wind-related parameters associated with large hail events[J]. Electronic J Severe Storms Meteor, 9(5):1-42.
McNulty R P, 1995. Severe and convective weather:A central regional forecasting challenge[J]. Wea Forecasting, 10(2):187-202.
Punge H J, Kunz M, 2016. Hail observations and hailstorm characteristics in Europe:A review[J]. Atmos Res, 176-177:159-184.
Rasmussen E N, Blanchard D O, 1998. A baseline climatology of sounding-derived supercell and tornado forecast parameters[J]. Wea Forecasting, 13(4):1148-1164.
Tian F Y, Zheng Y G, Zhang T, et al, 2015. Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China[J]. J Meteor Res, 29(3):370-384.
Weisman M L, Klemp J B, 1982. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy[J]. Mon Wea Rev, 110(6):504-520.
Xie B G, Zhang Q H, Wang Y Q, 2010. Observed characteristics of hail size in four regions in China during 1980-2005[J]. J Climate, 23(18):4973-4982.
Xie B G, Zhang Q H, Wang Y Q, 2008. Trends in hail in China during 1960-2005[J]. Geophy Res Lett, 35(13):195-209.
Zhang C X, Zhang Q H, Wang Y Q, 2008. Climatology of hail in China:1961-2005[J]. J Appl Meteor, 47(3):795-804.
Zheng L L, Sun J H, Zhang X L, et al, 2013. Organizational modes of mesoscale convective systems over central east China[J]. Wea Forecasting, 28(5):1081-1098.
段英, 2009. 冰雹灾害[M]. 北京:气象出版社. 131. Duan Y, 2009. Hail disaster[M]. Beijing:China Meteorological Press, 131.
樊李苗, 俞小鼎, 2013. 中国短时强对流天气的若干环境参数特征分析[J]. 高原气象, 32(1):156-165. Fan L M, Yu X D, 2013. Characteristic analyses on environmental parameters in short-term severe convective weather in China[J]. Plateau Meteor, 32(1):156-165. DOI:10. 7522/j. issn. 1000-0534. 2012. 00016.
方翀, 王西贵, 盛杰, 等, 2017. 华北地区雷暴大风的时空分布及物理量统计特征分析[J]. 高原气象, 36 (5):1368-1385. Fang C, Wang X G, Sheng J, et al, 2017. Temporal and spatial distribution of North China thunder-gust winds and the statistical analysis of physical characteristics[J]. Plateau Meteor, 36(5):1368-1385. DOI:10. 7522/j. issn. 1000-0534. 2016. 00083.
冯晋勤, 俞小鼎, 傅伟辉, 等, 2012. 2010年福建一次早春强降雹超级单体风暴对比分析[J]. 高原气象, 31(1):239-250. Feng J Q, Yu X D, Fu W H, et al, 2012. Comparative analysis on supercell storm structure of a severe hail shooting in Fujian province in early spring of 2010[J]. Plateau Meteor, 31 (1):239-250.
郭恩铭, 1984. 西藏冰雹的观测[J]. 气象学报, 42 (1):110-113. Guo E M, 1984. Hail observation over Tibet[J]. Acta Meteor Sinica, 42 (1):110-113.
黄治勇, 周志敏, 徐桂荣, 等, 2015. 风廓线雷达和地基微波辐射计在冰雹天气监测中的应用[J].高原气象, 34 (1):269-278.Huang Z Y, Zhou Z M, Xu G R, et al, 2015. Monitoring application of hailstorm event with the observation of wind profile radar and ground-based microwave radiometer[J]. Plateau Meteor, 34 (1):269-278. DOI:10. 7522/j. issn. 1000-0534. 2013. 00130.
濮文耀, 李红斌, 宋煜, 等, 2015. 0℃层高度的变化对冰雹融化影响的分析和应用[J]. 气象, 41(8):980-985. Pu W Y, Li H B, Song Y, et al, 2015. Analysis and application of the effect of 0℃ layer height on melting hail[J]. Meteor Mon, 41 (8):980-985.
孙继松, 石增云, 王令, 2006. 地形对夏季冰雹事件时空分布的影响研究[J]. 气候与环境研究, 11(1):76-84. Sun J S, Shi Z Y, Wang L, 2006. A study on topography impacting on distribution of hail events[J]. Climatic Environ Res, 11 (1):76-84.
王秀明, 俞小鼎, 朱禾, 2012. NCEP在分析资料在强对流环境分析中的应用[J]. 应用气象学报, 23(2):139-146. Wang X M, Yu X D, Zhu H, 2012. The applicability of NCEP reanalysis data to severe convection environment analysis[J]. J App Meteor Sci, 23 (2):139-146.
徐芬, 郑媛媛, 肖卉, 等, 2016. 江苏沿江地区一次强冰雹天气的中尺度特征分析[J]. 气象, 42 (5):567-577. Xu F, Zheng Y Y, Xiao H, et al, 2016. Mesoscale characteristics of a severe hail event over the area along Yangtze River in Jiangsu[J]. Meteor Mon, 42 (5):567-577.
徐家骝, 1978. 起伏条件对冰雹增长的影响[J]. 大气科学, 2 (3):230-237. Xu J L, 1978. On the effects of the fluctuating conditions on hail growth[J]. Scientia Atmos Sinica, 2 (3):230-237.
许新田, 王楠, 刘瑞芳, 等, 2010. 2006 年陕西两次强对流冰雹天气过程的对比分析[J]. 高原气象, 29 (2):447-460. Xu X T, Wang N, Liu R F, et al, 2010. Comparative analyses on two severe convective hailstorm weather process in Shaanxi province in 2006[J]. Plateau Meteor, 29 (2):447-460.
杨贵名, 马学款, 宗志平, 2003. 华北地区降雹时空分布特征[J]. 气象, 29 (8):31-34. Yang G M, Ma X K, Zong Z P, 2003. Characteristics of hailfall in north China[J]. Meteor Mon, 29 (8):31-34.
赵金涛, 岳耀杰, 王静爱, 等, 2015. 19502009年中国大陆地区冰雹灾害的时空格局分析[J]. 中国农业气象, 36 (1):83-92. Zhao J T, Yue Y J, Wang J H, et al, 2015. Study on spatio-temporal pattern of hail disaster in China mainland from 1950 to 2009[J]. Chinese Journal of Agrometeorology, 36 (1):83-92.
[1] 程译萱, 范广洲, 张永莉, 赖欣. 青藏高原及周边地区垂直温度梯度特征及其成因分析[J]. 高原气象, 2018, 37(2): 333-348.
[2] 李妮娜, 李建. 中国西南复杂地形区降水观测年际变化代表性问题初步分析[J]. 高原气象, 2017, 36(1): 119-128.
[3] 郭玉娣, 徐祥德, 陈渭民, 魏凤英, 陈爱军. “鱼尾”状地形热力效应对天山降水系统及水资源的影响[J]. , 2014, 33(5): 1363-1373.
[4] 杨仁勇, 闵锦忠, 郑艳. 强台风“纳沙”引发的特大暴雨过程数值试验[J]. 高原气象, 2014, 33(3): 753-761.
[5] 高登义. 山地屏障与水汽通道综合作用初探——兼谈大香格里拉自然成因[J]. 高原气象, 2007, 26(6): 1305-1310.
[6] 朱新胜, 张耀存. 次网格地形坡度坡向参数化及其对区域气候模拟的影响[J]. 高原气象, 2005, 24(2): 137-142.
[7] 张杰, 李栋梁. 祁连山及黑河流域降雨量的分布特征分析[J]. 高原气象, 2004, 23(1): 81-88.