Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (1): 207-222    DOI: 10.7522/j.issn.1000-0534.2016.00135
论文     
海南岛地形对局地海风降水强度和分布影响的数值模拟
王莹1, 苗峻峰1, 苏涛1,2
1. 南京信息工程大学大气科学学院, 江苏 南京 210044;
2. 湖南省气象台, 湖南 长沙 410118
A Numerical Study of Impact of Topography on Intensity and Pattern of Sea Breeze Precipitation over the Hainan Island
WANG Ying1, MIAO Junfeng1, SU Tao1,2
1. College of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
2. Hunan Meteorological Observatory, Changsha 410118, Hunan, China
 全文: PDF(23035 KB)  
摘要: 利用高分辨率模式WRF对2013年5月31日发生在海南岛的一次海风降水过程进行数值模拟,通过不同地形高度及裸土化的敏感性试验,探讨了地形对局地海风降水模拟的影响。结果表明,随着海风环流的不断发展,海风锋与降水落区几乎同相向内陆推进,降水落区主要分布在岛屿西部的黎母岭山前。海南岛海风降水的强度及分布特征与当地四周低平、中间高耸的地形特点密不可分,地形在整个海风降水期间存在动力、热力作用的交替演变。11:00(北京时,下同)-16:00,降水主要由岛屿单侧海风锋引起,由于海风所经之处地形坡度较低,地形对海风的影响以热力增强为主,地形高度越大,驱动海风发展的海陆感热通量差异越大,海风环流发展越旺盛,降水强度也越大。17:00-21:00,降水主要由东南、西北向海风锋正向碰撞造成,随着海风不断向内陆传播,地形的动力阻挡作用越来越强,当地形坡度增加到一定程度时,这种阻挡作用可以迅速削弱海风环流,使降水强度减小。裸土化试验进一步表明,地形高度变化导致的以上影响依赖于下垫面的非均匀特征,地形和植被的共同作用可使地表能量的分配产生更大的差异,进而对局地降水产生较大的影响。
关键词: 热带岛屿复杂地形海风辐合线海风锋海风降水    
Abstract: Sea Breeze is a common local circulation driven by differential heating between land and sea, which has been studied observationally, experimentally, theoretically and numerically for a long time. Previous studies have shown that sea breeze can be strongly influenced by complex inland topography, theoretically from dynamic and thermodynamic aspects. The studied area Hainan Island which has high occurrence of sea breeze also has special terrain characteristics, therefore the sea breeze is different from other coastal areas, and the sea breeze precipitation is one of the most important precipitation regimes in Hainan according to previous studies. In this paper, the sea breeze precipitation over the Hainan Island on May 31, 2013 was simulated by high-resolution numerical model WRF, the impact of topography on intensity and pattern of local sea breeze precipitation was studied by designing different topography experiments. The results show that, WRF model can simulate the surface wind and sea breeze precipitation intensity reasonably, and the time evolution of simulation and actual precipitation generally approaches well. With the continuous development of sea-breeze circulation, the timing and placement of convective precipitation as well as the sea breeze front almost move inland in phase, and the precipitation area mainly distribute in the front of Li Mu Mountain, which is located in the southwest of studied area. The rainfall structural characteristics are closely associated with the topography feature which is high and upright in the middle area while relatively lower all around in the Hainan Island, the dynamic and thermodynamic influence of terrain has alternate evolution in the whole process of sea breeze precipitation. During 11:00-16:00 BST, precipitation was mainly caused by single sea breeze front. The primary mechanism was thermal enhancement duing to the lower height of topography at this stage, and the sea-land thermal flux difference which essentially drive the development of sea breeze is more notable with higher terrain height. While during 17:00-21:00 BST, precipitation was mainly caused by the collision of eastern and western sea breeze front, with the inland propagation of sea breeze front, terrain blocking effect took dominant role as elevation increases gradually, but if the terrain height increases to a certain degree, the blocking effect can rapidly weaken sea breeze circulation and thus reduce rainfall intensity. Nevertheless, all the effects mentioned above depends on the inhomogeneous character of underlying surface, the combination of topography and vegetation can produce larger difference of the land surface energy distribution, and consequently lead to greater influence on local precipitation.
Key words: Tropical Island    complex terrain    sea breeze convergence    sea breeze front    sea breeze precipitation
收稿日期: 2016-05-23 出版日期: 2018-02-20
ZTFLH:  P458.2  
基金资助: 公益性行业(气象)科研专项(GYHY201306009)
通讯作者: 苗峻峰.E-mail:miaoj@nuist.edu.cn     E-mail: miaoj@nuist.edu.cn
作者简介: 王莹(1993-),女,河南漯河人,硕士研究生,主要从事中尺度气象学和陆气相互作用研究.E-mail:wy19930615@sina.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王莹
苗峻峰
苏涛

引用本文:

王莹, 苗峻峰, 苏涛. 海南岛地形对局地海风降水强度和分布影响的数值模拟[J]. 高原气象, 2018, 37(1): 207-222.

WANG Ying, MIAO Junfeng, SU Tao. A Numerical Study of Impact of Topography on Intensity and Pattern of Sea Breeze Precipitation over the Hainan Island. PLATEAU METEOROLOGY, 2018, 37(1): 207-222.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2016.00135        http://www.gyqx.ac.cn/CN/Y2018/V37/I1/207

Abbs D J, Physick W L, 1992. Sea-breeze observations and modelling:A review[J]. Aust Meteorol Mag, 41:7-19.
André J C, Bougeault P, Mahfouf J F, et al, 1989. Impact of forests on mesoscale meteorology[J]. Philos T Roy Soc B, 324(1223):407-422.
Barthlott C, Kirshbaum D J, 2013. Sensitivity of deep convection to terrain forcing over Mediterranean Islands[J]. Quart J Roy Meteor Soc, 139(676):1762-1779.
Borne K, Chen D, Nunez M, 1998. A method for finding sea breeze days under stable synoptic conditions and its application to the Swedish west coast[J]. Int J of Climatol, 18(8):901-914.
Crosman E T, Horel J D, 2010. Sea and lake breezes:A review of numerical studies[J]. Bound Lay Meteor, 137(1):1-29.
Findell K L, Eltahir E A B, 2003. Atmospheric controls on soil moisture-boundary layer interactions. Part I:Framework development[J]. J Hydrometeorol, 4(3):552-569.
Fovell R G, 2005. Convective initiation ahead of the sea-breeze front[J]. Mon Wea Rev, 133(1):264-278.
Hill C M, Fitzpatrick P J, Corbin J H, et al, 2010. Summertime precipitation regimes associated with the sea breeze and land breeze in southern Mississippi and eastern Louisiana[J]. Wea Forecasting, 25(6):1755-1779.
Huang Q Q, Cai X H, Song Y, et al, 2016. A numerical study of sea breeze and spatiotemporal variation in the coastal atmospheric boundary layer at Hainan Island, China[J]. Bound Lay Meteor, 161(3):543-560.
Hughes M, Hall A, Fovell R G, 2009. Blocking in areas of complex topography and its influence on rainfall distribution[J]. J Atmos Sci, 66(2):508-518.
Kala J, Lyons T J, Abbs D J, et al, 2010. Numerical simulations of the impacts of land-cover change on a southern sea breeze in south-west western Australia[J]. Bound Lay Meteor, 135(3):485-503.
Kruit R J W, Holtslag A A M, Tijm A B C, 2004. Scaling of the sea-breeze strength with observations in the Netherlands[J]. Bound Lay Meteor, 112(2):369-380.
Liang Z M, Wang D H, 2015. Numerical study of the evolution of a sea-breeze front under two environmental flows[J]. J Meteor Res, 29(3):446-466.
Mahrer Y, Pielke R A, 1977. The effects of topography on sea and land breezes in a two-dimensional numerical model[J]. Mon Wea Rev, 105(9):1151-1162.
Miao J F, Kroon L J M, De Arellano J V G, et al, 2003. Impacts of topography and land degradation on the sea breeze over eastern Spain[J]. Meteor Atmos Phys, 84(3-4):157-170.
Miao J F, Wyser K, Chen D, et al, 2009. Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics[J]. Ann Geophys, 27(6):2303-2320.
Miller S T K, Keim B D, Talbot R W, et al, 2003. Sea breeze:Structure, forecasting, and impacts[J]. Rev geophys, 41(3):1-31.
Nitis T, Kitsiou D, Klaic Z B, et al, 2005. The effects of basic flow and topography on the development of the sea breeze over a complex coastal environment[J]. Quart J Roy Meteor Soc, 131(605):305-327.
Ramis C, Romero R, 1995. A first numerical simulation of the development and structure of the sea breeze on the Island of Mallorca[J]. Ann Geophys, 13(9):351-363.
Roe G H, 2005. Orographic precipitation[J]. Annu Rev Earth Pl Sc, 33:645-671.
Simpson M, Warrior H, Raman S, et al, 2007. Sea-breeze-initiated rainfall over the east coast of India during the Indian southwest monsoon[J]. Nat Hazards, 42(2):401-413.
Skamarock W C, Klemp J B, Dudhia J, et al, 2008. A description of the advanced research WRF version 3[J]. NCAR Technical Note NCAR/TN-475+STR. DOI:10. 5065/D68S4MVH.
TerMaat H W, Moors E J, Hutjes R W A, et al, 2013. Exploring the impact of land cover and topography on rainfall maxima in the Netherlands[J]. J Hydrometeorol, 14(2):524-542.
Tu X L, Zhou M Y, Sheng S H, 1993. The mesoscale numerical simulation of the flow field of the Hainan Island and the Leizhou Penisula[J]. Acta Oceanologica Sinica, 12(2):219-235.
Wang D, Miao J F, Tan Z M, 2013. Impacts of topography and land cover change on thunderstorm over the Huangshan (Yellow Mountain) area of China[J]. Nat Hazards, 67(2):675-699.
Wang D, Miao J F, Zhang D L, 2015. Numerical simulations of local circulation and its response to land cover changes over the Yellow Mountains of China[J]. J Meteor Res, 29(4):667-681.
Wilson J W, Schreiber W E, 1986. Initiation of convective storms at radar-observed boundary-layer convergence lines[J]. Mon Wea Rev, 114(12), 2516-2536.
Zhao Y C, 2014. Diurnal variation of rainfall associated with tropical depression in South China and its relationship to land-sea contrast and topography[J]. Atmosphere, 5(1):16-44.
付秀华, 李兴生, 吕乃平, 等, 1991. 复杂地形条件下三维海陆风数值模拟[J]. 应用气象学报, 2(2):113-119. Fu X H, Li X S, Lü N P, et al, 1991. Three dimensional numerical model of the sea and land breeze with complex terrain[J]. Quart J Appl Meteor, 2(2):113-119.
金皓, 王彦昌, 1991. 三维海陆风的数值模拟[J]. 大气科学, 15(5):25-32. Jin H, Wang Y C, 1991. Numerical simulation of three-dimensional sea-land breeze[J]. Chinese J Atmos Sci, 15(5):25-32.
廖菲, 洪延超, 郑国光, 2007. 地形对降水的影响研究概述[J]. 气象科技, 35(3):309-316. Liao F, Hong Y C, Zheng G G, 2007. Review of orographic influences on surface precipitation[J]. Meteor Sci Technol, 35(3):309-316.
刘燕飞, 隆霄, 王晖, 2015. 陕西中西部地区一次暴雨过程的数值模拟研究[J]. 高原气象, 34(2):378-388. Liu Y F, Long X, Wang H, 2015. Numerical simulation studies on a rainstorm in central western Shaanxi Province[J]. Plateau Meteor, 34(2):378-388. DOI:10. 7522/j. issn. 1000-0534. 2013. 00182.
苗峻峰, 2014. 城市热岛和海风环流相互作用的数值模拟研究进展[J]. 大气科学学报, 37(4):521-528. Miao J F, 2014. An overview of numerical studies of interaction of urban heat island and sea breeze circulations[J]. Transactions Atmos Sci, 37(4):521-528.
慕建利, 李泽椿, 谌芸, 等, 2014. 一次陕西关中强暴雨中尺度系统特征分析[J]. 高原气象, 33(1):148-161. Mu J L, Li Z C, Chen Y, et al, 2014. Feature analyses of mesoscale convective system of a heavy rainfall in the central Shaanxi Plain[J]. Plateau Meteor, 33(1):148-161. DOI:10. 7522/j. issn. 1000-0534. 2013. 00049.
苏涛, 苗峻峰, 蔡亲波, 2016a. 海南岛海风雷暴结构的数值模拟[J]. 地球物理学报, 59(1):59-78. Su T, Miao J F, Cai Q B, 2016a. A numerical simulation of sea breeze thunderstorm structure over the Hainan Island[J]. Chinese J Geophys, 59(1):59-78.
苏涛, 苗峻峰, 韩芙蓉, 2016b. 海风雷暴的观测分析和数值模拟研究进展[J]. 气象科技, 44(1):47-54. Su T, Miao J F, Han F R, 2016b. An overview of observational and numerical studies of sea breeze thunderstorms[J]. Meteor Sci Technol, 44(1):47-54.
王静, 苗峻峰, 冯文, 2016. 海南岛海风演变特征的观测分析[J]. 气象科学, 36(2):244-255. Wang J, Miao J F, Feng W, 2016. An observational analysis of sea breeze characteristics over the Hainan Island[J]. Sci Meteor Sinica, 36(2):244-255.
王彦, 于莉莉, 朱男男, 等, 2011. 渤海湾海风锋与雷暴天气[J]. 高原气象, 30(1):245-251. Wang Y, Yu L L, Zhu N N, et al, 2011. Sea breeze front in Bohai Bay and thunderstorm weather[J]. Plateau Meteor, 30(1):245-251.
王彦, 高守亭, 梁钊明, 2014. 渤海湾海风锋触发雷暴的观测和模拟分析[J]. 高原气象, 33(3):848-854. Wang Y, Gao S T, Liang Z M, 2014. Analysis on the observation and simulation of thunderstorms triggered by sea breeze front in Bohai Bay[J]. Plateau Meteor, 33(3):848-854. DOI:10. 7522/j. issn. 1000-0534. 2013. 00030.
王语卉, 苗峻峰, 蔡亲波, 2016. 海南岛海风三维结构的数值模拟[J]. 热带气象学报, 32(1):109-124. Wang Y H, Miao J F, Cai Q B, 2016. Numerical simulation on the 3-D structure of sea breeze over the Hainan Island[J]. J Trop Meteor, 32(1):109-124.
尹东屏, 吴海英, 张备, 2010. 一次海风锋触发的强对流天气分析[J]. 高原气象, 29(5):1261-1269. Yin D P, Wu H Y, Zhang B, 2010. Analysis on a severe convective weather triggered by sea breeze front[J]. Plateau Meteor, 29(5):1261-1269.
翟国庆, 高坤, 俞樟孝, 等, 1995. 暴雨过程中中尺度地形作用的数值试验[J]. 大气科学, 19(4):475-480. Zhai G Q, Gao K, Yu Z X, et al, 1995. Numerical simulation of the effects of mesoscale topography in a heavy rain process[J]. Chinese J Atmos Sci, 19(4):475-480.
翟武全, 李国杰, 孙斌, 等, 1997. 海南岛附近四季风场的中尺度环流[J]. 热带气象学报, 13(4):315-322. Zhai W Q, Li G J, Sun B, et al, 1997. Season wind fileds of mesoscale circulation in Hainan Island[J]. J Trop Meteor, 13(4):315-322.
张雅斌, 马晓华, 冉令坤, 等, 2016. 关中地区两次初夏区域性暴雨过程特征分析[J]. 高原气象, 35(3):708-725. Zhang Y B, Ma X H, Ran L K, et al, 2016. Characteristic analysis on two regional rainstorms at Guanzhong in early summer[J]. Plateau Meteor, 35(3):708-725. DOI:10. 7522/j. issn. 1000-0534. 2015. 00014.
张振州, 蔡旭晖, 宋宇, 等, 2014. 海南岛地区海陆风的统计分析和数值模拟研究[J]. 热带气象学报, 30(2):270-280. Zhang Z Z, Cai X H, Song Y, et al, 2014. Statistical characteristics and numerical simulation of sea land breezes in Hainan Island[J]. J Trop Meteor, 30(2):270-280.
朱乾根, 周军, 王志明, 等, 1983. 华南沿海五月份海陆风温压场特征与降水[J]. 南京气象学院学报, 6(2):150-158. Zhu Q G, Zhou J, Wang Z M, et al, 1983. Features of temperature and pressure fields with respect to sea/land breeze and precipitation along the coast of South China during May[J]. Journal of Nanjing Institute of Meteorology, 6(2):150-158.
[1] 翟丽萍, 农孟松, 赖珍权, 祁丽燕, 刘日胜. 广西“4·20”暖区飑线的形成及结构[J]. 高原气象, 2018, 37(2): 568-576.
[2] 赵庆云, 傅朝, 刘新伟, 陈晓燕, 周晓军. 西北东部暖区大暴雨中尺度系统演变特征[J]. 高原气象, 2017, 36(3): 697-704.
[3] 武麦凤, 吉庆, 武维刚. 一次槽前“干”对流背景下阵风锋天气过程分析[J]. 高原气象, 2017, 36(3): 845-851.
[4] 常煜, 李秀娟, 陈超, 马素艳, 仲夏, 赵斐, 马学峰. 内蒙古一次暴雨过程中尺度特征及成因分析[J]. 高原气象, 2016, 35(2): 432-443.
[5] 万明波, 孟宪贵, 刁秀广. 山东极端强降雨风暴传播类型及流场结构特征[J]. 高原气象, 2015, 34(6): 1741-1750.
[6] 王天义, 朱克云, 张杰, 周筠珺. 拉萨一次热力雷暴的结构特征及数值模拟[J]. 高原气象, 2015, 34(5): 1237-1248.
[7] 黄勇, 吴林林, 冯妍, 翟菁, 刘慧娟, 袁野. 两次对流云合并过程的双偏振雷达观测研究[J]. 高原气象, 2015, 34(5): 1474-1485.
[8] 刁秀广, 孟宪贵, 万明波, 张骞, 李静. 源于飑线前期和强降雨带后期的弓形回波雷达产品特征及预警[J]. 高原气象, 2015, 34(5): 1486-1494.
[9] 潘留杰, 张宏芳, 侯建忠, 袁小林. 弱天气系统强迫下黄土高原强对流云的初生及演变[J]. 高原气象, 2015, 34(4): 982-990.
[10] 孙燕, 韩桂荣, 李超. 夏季东北冷涡异常对淮河流域降水影响机制的数值模拟[J]. 高原气象, 2015, 34(4): 1149-1157.
[11] 杜正静, 何玉龙, 熊方, 邓晓红, 石开银, 彭倩. 滇黔准静止锋诱发贵州春季暴雨的锋生机制分析[J]. , 2015, 34(2): 357-367.
[12] 徐芬, 杨吉, 夏文梅, 周红根. 雷达强度数据中的阵风锋特征统计和自动识别[J]. , 2015, 34(2): 586-595.
[13] 王晓峰, 许晓林, 张蕾, 王平, 徐同. 上海"0731"局地强对流观测分析[J]. 高原气象, 2014, 33(6): 1627-1639.
[14] 张一平, 俞小鼎, 孙景兰, 梁俊平, 李周. 一次槽后型大暴雨伴冰雹的形成机制和雷达观测分析[J]. , 2014, 33(4): 1093-1104.
[15] 徐芬, 王博妮, 夏文梅, 徐琪. 长江中下游地区一次春季暴雨过程的多普勒雷达速度特征分析与研究[J]. 高原气象, 2014, 33(2): 548-556.
img

QQ群聊

img

官方微信