Please wait a minute...
高原气象  2018, Vol. 37 Issue (1): 286-295    DOI: 10.7522/j.issn.1000-0534.2017.00024
史莹莹1,2, 张镭1, 田鹏飞1, 刘慧1, 马强2
1. 半干旱气候变化教育部重点实验室, 兰州大学大气科学学院, 甘肃 兰州 730000;
2. 94188部队, 陕西 西安 710000
The Optical and Microphysical Characteristics of Dust Aerosol over a Typical Semi-arid Region in Loess Plateau
SHI Yingying1,2, ZHANG Lei1, TIAN Pengfei1, LIU Hui1, MA Qiang2
1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China;
2. Unit 94188, Xi'an 710000, Shaanxi, China
 全文: PDF(3565 KB)  
摘要: 利用2006-2012年兰州大学半干旱气候与环境观测站太阳光度计资料,采用严格判断方法确定出沙尘气溶胶数据,分析沙尘气溶胶的光学和微物理特性。结果表明,沙尘气溶胶光学厚度最大值(2.80)出现在春季,主要分布在0.3~0.8,日均值0.63。Ångstr m波长指数与光学厚度位相相反,春季最小(0.002),秋季最大(0.525),主要分布在0.2~0.4,日均值0.27。沙尘多为大粒径气溶胶,粒子谱粗模态占主导。总粒子和粗模态粒子体积浓度变化很大,与光学厚度年变化一致,在4月达到最大。有效半径与复折射指数实部变化一致,春、冬季较大,夏、秋季较小。单次散射反照率冬、春小,夏、秋较大,最小值出现在2月,与复折射指数虚部反位相。
关键词: 沙尘气溶胶SACOL光学厚度波长指数    
Abstract: Atmospheric aerosols regulate the balance of radiation budgets of the surface and atmosphere through direct, indirect and semi-direct effects, which affect regional and global climate change. In order to evaluate the aerosol radiation effects accurately, it is necessary to have a good understanding of aerosol optical and microphysical characteristics. At present, there is no sufficient understanding of the aerosol optical and microphysical characteristics over the typical semi-arid region in Loess Plateau. Based on the 2006-07-28 to 2012-08-10 sun photometer data from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), dust aerosol was determined by using a strict judgment, and then dust aerosol optical and microphysical characteristics were analyzed. The work has important scientific significance and application value. The main results are as follows:Spring has the highest (2.80) dust aerosol optical depth (AOD), which is mainly distributed from 0.3 to 0.8 (about 82%), with a daily average of 0.63±0.44, indicating that the largest number of dust days occur in spring. Ångström exponent with maximum and minimum in spring (0.002) and autumn (0.525), which is opposite in phase to AOD, ranges between 0.2~0.4 (about 56%) and has a daily average of 0.27±0.12, showing that dust aerosols are mainly large particle size. The coarse mode dominates the size distribution of the dust aerosol, and the spring concentration is the largest. Both total and coarse mode volume concentrations have similar annual variation to AOD and reach their maximum in April with the fine mode volume concentration changing very little. The aerosol total and coarse mode effective radius ranges from its maximum in spring to its minimum in autumn, and the amplitude of the fine mode particles is small. The real part of the refractive index with the change of the effective radius is higher in spring and winter while it's lower in summer and autumn, which indicates that dust aerosol has strong scattering. In opposite phase to imaginary part of refraction index, the single scattering albedo is larger in spring, but has a minimum value in February, so dust aerosol absorption is weaker than black carbon aerosol. The asymmetry factor reaches its minimum in spring, which indicates that dust aerosol has stronger forward scattering than other kinds of aerosols.
Key words: Dust aerosol    SACOL    AOD    angström exponent
收稿日期: 2016-12-05 出版日期: 2018-02-20
ZTFLH:  P401  
基金资助: 国家重大科学研究计划项目(2012CB955302)
通讯作者: 张镭     E-mail:
作者简介: 史莹莹(1990-),女,河南漯河人,硕士研究生,主要从事气溶胶综合观测研究
E-mail Alert


史莹莹, 张镭, 田鹏飞, 刘慧, 马强. 黄土高原半干旱区沙尘气溶胶光学和微物理特性[J]. 高原气象, 2018, 37(1): 286-295.

SHI Yingying, ZHANG Lei, TIAN Pengfei, LIU Hui, MA Qiang. The Optical and Microphysical Characteristics of Dust Aerosol over a Typical Semi-arid Region in Loess Plateau. PLATEAU METEOROLOGY, 2018, 37(1): 286-295.


Bi J R, Shi J S, Xie Y K, et al, 2014. Dust aerosol characteristics and shortwave radiative impact at a Gobi Desert of Northwest China during the spring of 2012[J]. J Meteor Soc Japan, 92A (SI):33-56. DOI:10. 2151/jmsj. 2014-A03.
Che H, Xia X, Zhu J, et al, 2014. Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements[J]. Atmos Chem Phys, 14:2125-2138. DOI:10. 5194/acp-14-2125-2014.
Dubovik O, Sinyuk A, Lapyonok T, et al, 2006. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust[J]. J Geophys Res:Atmospheres, 111(D11):D11208. DOI:10. 1029/2005JD006619.
Hansen J, Sato M, Kharecha P, et al, 2011. Earth's energy imbalance and implications[J]. Atmos Chem Phys, 11(24):13421-13449. DOI:10. 5194/acp-11-13421-2011.
Holben B N, Eck T F, Slutsker I, et al, 1998. AERONET-A federated instrument network and data archive for aerosol characterization[J]. Remote Sens Environ, 66(1):1-16. DOI:10. 1016/S0034-4257(98)00031-5.
Huang J P, Zhang W, Zuo J Q, et al, 2008. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Adv Atmos Sci, 25(6):906-921. DOI:10. 1007/s00376-008-0906-7.
Huang Z W, Huang J P, Tadahiro H, et al, 2015. Short-cut transport path for Asian dust directly to the Arctic:a case study[J]. Environ Res Lett, 10 (11):114018. DOI:10. 1088/1748-9326/10/11/114018.
Kevin D P, Thomas A C, Robert A E, et al, 1997. Long-range transport of North African dust to the eastern United States[J]. J Geophys Res:Atmospheres, 102(D10):11225-11238. DOI:10. 1029/97JD00260.
Li Z, Gu X, Wang L, et al, 2013. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter[J]. Atmos Chem Phys, 13(20):10171-10183. DOI:10. 5194/acpd-13-5091-2013.
Li Z Q, Lee K H, Wang Y S, et al, 2010. First observation-based estimates of cloud-free aerosol radiative forcing across China[J]. J Geophys Res:Atmospheres, 115(D00K18). DOI:10. 1029/2009JD013306.
Qian Y, Gong D Y, Fan J W, et al, 2009. Heavy pollution suppresses light rain in China:Observations and modeling[J]. J Geophys Res:Atmospheres, 114(D00K02). DOI:10. 1029/2008JD011575.
Ramanathan V, Crutzen P J, Kiehl J T, et al, 2002. Aerosols, climate, and the hydrological cycle[J]. Science, 294(5549):2119-24. DOI:10. 1126/science. 1064034.
Tanré D, Kaufman Y J, Holben B N, et al, 2001. Climatology of dust aerosol size distribution and opticalproperties derived from remotely sensed data in the solarspectrum[J]. J Geophys Res:Atmospheres, 106(D16):18205-18217. DOI:10. 1029/2000JD900663.
Tian P F, Cao X J, Zhang L, et al, 2015. Observation and simulation study of atmospheric aerosol nonsphericity over the Loess Plateau in northwest China[J]. Atmos Environ, 117:212-219. DOI:10. 1016/j. atmosenv. 2015. 07. 020.
Uno I, Eguchi K, Yumimoto K, et al, 2009. Asian dust transported one full circuit around the globe[J]. Nature Geoscience, 2(8):557-560.
Wang H B, Zhang L, Cao X J, et al, 2013. A-Train satellite measurements of dust aerosol distributions over northern China[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 122:170-179. DOI:10. 1016/j. jqsrt. 2012. 08. 011.
Zhang J, Li M X, 2012. Vertical distribution of sand-dust aerosols and the relationships with atmospheric environment[J]. Journal of Arid Land, 4(4):357-368. DOI:10. 3724/SP. J. 1227. 2012. 00357.
Zhang L, Cao X J, Zhou B, et al, 2010. A case study of dust aerosol radiative properties over Lanzhou, China[J]. Atmos Chem Phys, 10:4283-4293. DOI:10. 5194/acp-10-4283-2010.
白鸿涛, 陈勇航, 黄建平, 等, 2009. AERONET SACOL站冬春季气溶胶光学特性变化特征[M]. 第26届中国气象学会年会, 627-639. Bai H T, Chen Y H, Huang J P, et al, 2009. Observation of aerosol optical properties in SACOL using AERONET[M]. The 26th annual meeting at the Chinese Meteorological Society, 627-639.
曹贤洁, 张镭, 周碧, 等, 2009. 利用激光雷达观测兰州沙尘气溶胶辐射特性[J]. 高原气象, 28(5):1115-1120. Cao X J, Zhang L, Zhou B, et al, 2009. Lidar measurement of dust aerosol radiative property over Lanzhou[J]. Plateau Meteor, 28(5):1115-1120. DOI:10. 3788/aos20103010. 2837.
常倬林, 崔洋, 张武, 等, 2015. 宁夏典型沙尘天气条件下气溶胶分布特征研究[J]. 高原气象, 34(4):1049-1056. Chang Z l, Cui Y, Zhang W, et al, 2015. Temporal and spatial distribution of atmospheric aerosol in typical dusty weather over Ningxia[J]. Plateau Meteor, 34(4):1049-1056. DOI:10. 7522/j. issn. 1000-0534. 2014. 000401.
杜川利, 余兴, 2013. 气溶胶和城市热岛效应对秦岭地区近50年气温序列影响分析[J]. 高原气象, 32(5):1321-1328. Du C L, Yu X, 2013. Analysis on influence of aerosol and urban heat island effect on temperature series in Qinling Region in recent 50 years[J]. Plateau Meteor, 32(5):1321-1328. DOI:10. 7522/j. issn. 1000-0534. 2012. 00124.
高中明, 闭建荣, 黄建平, 2013. 基于AERONET和SKYNET网观测的中国北方地区气溶胶光学特征分析[J]. 高原气象, 32(5):1293-1307. Gao Z M, Bi J R, Huang J P, 2013. Analysis on aerosol optical property over Northern China from AERONET and SKYNET observations[J]. Plateau Meteor, 32(5):1293-1307. DOI:10. 7522/j. issn. 1000-0534. 2012. 00116.
李剑东, 毛江玉, 王维强, 2015. 大气模式估算的东亚区域人为硫酸盐和黑碳气溶胶辐射强迫及其时间变化特征[J]. 地球物理学报, 58(4):1103-1120. Li J D, Mao J Y, Wang W C, 2015. Anthropogenic eastern asian radiative forcing due to sulfate and black carbon aerosols and their time evolution estimated by an AGCM[J]. Chinese J Geophys, 58(4):1103-1120. DOI:10. 6038/cjg20150402.
马井会, 2007a. 黑碳和沙尘气溶胶光学特性及全球辐射强迫的模拟研究[D]. 南京:南京信息工程大学. Ma J H, 2007a. The optical properties and global radiative forcing simulation of black carbon and dust aerosols[D]. Nanjing:Nanjing University of Information Science & Technology.
马井会, 张华, 郑有飞, 等, 2007b. 沙尘气溶胶光学厚度的全球分布及分析[J]. 气候与环境研究, 12(2):156-164. Ma J H, Zhang H, Zheng Y F, et al, 2007b. The optical depth global distribution of dust aerosol and its possible reason analysis[J]. Climat Environ Res, 12(2):156-164.
宿兴涛, 许丽人, 魏强, 等, 2016. 东亚地区沙尘气溶胶对降水的影响研究[J]. 高原气象, 35(1):211-219. Su X T, Xu L R, Wei Q, 2016. Study of impacts of dust aerosol on precipitation over East Asia[J]. Plateau Meteor, 35(1):211-219. DOI:10. 7522/j. issn. 1000-0534. 2014. 00091.
牛生杰, 章澄昌, 孙继明, 2001. 贺兰山地区沙尘暴若干问题的观测研究[J]. 气象学报, 259(2):196-205. Niu S J, Zhang C C, Sun J M, 2001. Observational atudies on aandstorm in Helan Mountainous Area[J]. Acta Meteor Sinica, 259(2):196-205. DOI:10. 3321/j. issn:0577-6619. 2001. 02. 006.
牛生杰, 孙照渤, 2005. 春末中国西北沙漠地区沙尘气溶胶物理特性的飞机观测[J]. 高原气象, 24(4):604-610. Niu S J, Sun Z B, 2005. Aircraft measurements of sand aerosol over Northwest China desert area in late spring[J]. Plateau Meteor, 24(4):604-610. DOI:10. 3321/j. issn:1000-0534. 2005. 04. 021.
权建农, 奚晓霞, 王鑫, 等, 2005. 兰州市2001年沙尘气溶胶质量浓度的特征分析[J]. 中国沙漠, 25(l):93-97. Quan J N, Xi X X, Wang X, et al, 2005. Analysis on aerosol concentration in Lanzhou City from sand-dust storm in 2001[J]. Journal of Desert Research, 25(l):93-97. DOI:10. 3321/j. issn:1000-694X. 2005. 01. 016.
王宏斌, 张志薇, 张镭, 等, 2015. 中国3个AERONET站点气溶胶大小的识别及特征分析[J]. 中国环境科学, 35(4):995-1003. Wang H B, Zhang Z W, Zhang L, et al, 2015. Identify the size of aerosol particles and analyze its characteristic at three AERONET sites in China[J]. China Environ Sci, 35(4):995-1003.
徐国昌, 陈敏连, 吴国雄, 1979. 甘肃省"4. 22"特大沙暴分析[J]. 气象学报, 37(1):26-35. Xu G C, Chen M L, Wu G X, 1979. On an extraordinary heavy sandstorm on April 22nd in Gansu[J]. J Meteor Res, 37(1):26-35.
延昊, 矫梅燕, 毕宝贵, 等, 2006. 塔克拉玛干沙漠中心的沙尘气溶胶观测研究[J]. 中国沙漠, 26(3):389-393. Yan H, Jiao M Y, Bi B G, et al, 2006. Observation on sand-dust aerosol in center of Taklimakan Desert[J]. Journal of Desert Research, 26(3):389-393. DOI:10. 3321/j. issn:1000-694X. 2006. 03. 013.
张仁健, 周家茂, 曹军骥, 2007. 中国沙漠化及其防治[J]. 中国粉体技术, 13(1):1-5. Zhang R J, Zhou J M, Cao J J, 2007. Control of sandy desertification in China[J]. China Powder Science and Technology, 13(1):1-5. DOI:10. 3969/j. issn. 1008-5548. 2007. 01. 001.
张志薇, 王宏斌, 张镭, 等, 2014. 中国地区3个AERONET站点气溶胶直接辐射强迫分析[J]. 中国科学院学报, 31(3):297-305. Zhang Z W, Wang H B, Zhang L, et al, 2014. Aerosol direct radiative forcing at three AERONET sites in China[J]. Journal of University of Chinese Academy of Sciences, 31(3):297-305. DOI:10. 7523/j. issn. 2095-6134. 2014. 03. 002.
[1] 齐庆华, 蔡榕硕. 中国大陆东部相对湿度变化与海陆热力差异的关联性初探[J]. 高原气象, 2017, 36(6): 1587-1594.
[2] 张雪莹, 王鑫, 周越, 魏海伦, 浦伟, 史晋森, 戴明凯. 兰州市夏季大气中碳类气溶胶含量变化特征及其来源分析[J]. 高原气象, 2017, 36(2): 528-537.
[3] 郑玉兰, 苗世光, 包云轩, 刘珂. 建筑物制冷系统人为热排放与气象环境的相互作用[J]. 高原气象, 2017, 36(2): 562-574.
[4] 何建军, 余晔, 刘娜, 赵素平, 陈晋北, 于丽娟. 气象条件和污染物排放对兰州市冬季空气质量的影响[J]. 高原气象, 2016, 35(6): 1577-1583.
[5] 陈玲, 周筠珺. 青藏高原和四川盆地夏季降水云物理特性差异[J]. 高原气象, 2015, 34(3): 621-632.
[6] 孙玉稳, 李宝东, 刘伟, 韩洋, 孙霞, 董晓波, 姜岩. 河北秋季层状云物理结构及适播性分析[J]. 高原气象, 2015, 34(1): 237-250.
[7] 周碧, 张镭, 隋兵, 蒋德明, 曹贤洁, 李霞, 刘志雄. 利用激光雷达探测兰州地区气溶胶的垂直分布[J]. , 2014, 33(6): 1545-1550.
[8] 宋玉强, 刘红年, 朱焱, 王学远. 城市非均匀性对城市气象特征影响的数值模拟[J]. , 2014, 33(6): 1579-1588.
[9] 邱崇践, 郜吉东. 模式误差对变分同化过程影响的数值研究[J]. 高原气象, 1994, 13(4): 449-456.
[10] 郑玉兰, 苗世光, 张崎, 包云轩. 建筑物能量模式的改进及制冷系统人为热排放研究[J]. 高原气象, 2015, 34(3): 786-796.