Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 358-370    DOI: 10.7522/j.issn.1000-0534.2017.00067
论文     
那曲高寒草地上四种地表通量计算方法的对比
严晓强1,2, 胡泽勇1,3, 孙根厚1, 谢志鹏1,2
1. 中国科学院西北生态环境资源研究院/寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049;
3. 中国科学院青藏高原地球科学卓越创新中心, 北京 100101
Comparison of Four Methods for Calculating Surface Fluxeson Alpine Grassland at Naqu
YAN Xiaoqiang1,2, HU Zeyong1,3, SUN Genhou1, XIE Zhipeng1,2
1. Key Laboratory for land process and climate change in cold and Arid Regions, Northwest Institute of Ecological and Environmental Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Science, Beijing 100101, China
 全文: PDF(10205 KB)  
摘要: 利用中国科学院那曲高寒气候环境观测研究站2013年9月至2014年8月自动气象站(AWS)和涡动相关系统(EC)的观测资料,基于空气动力学法、地表能量平衡组合法、总体输送法以及涡动相关法,计算了高寒草地下垫面的湍流通量,并对不同方法计算结果间的一致性和差异性进行了分析。结果表明,不同方法计算的湍流通量特征具有明显的差异。地表能量平衡组合法满足能量平衡关系,但在早晨和傍晚层结转换期间,计算的湍流通量出现异常不稳定值;空气动力学法计算的湍流通量在整个观测期与涡动相关法计算的湍流通量相关性最高,但在大气稳定度参数接近0,计算结果不稳定;总体输送法计算的通量数据在地气温差为负值时发散明显,但该方法原理简单,适合在只有常规观测项目的业务气象站或在气象观测项目不全的野外台站使用。空气动力学法和地表能量平衡组合法与涡动相关法的湍流通量的平均偏差相对较小,而总体输送法平均偏差相对较大。研究方法和结果除了为这些方法的使用提供参考外,也为建立长时间通量序列提供了一个较为合理的依据,有助于深入了解高原地气相互作用。
关键词: 青藏高原高寒草甸湍流通量计算方法差异性    
Abstract: The near-surface layer gradients observed data of wind speed, temperature and specific humidity combined with the radiative and soil heat fluxes have been widely applied in estimating the surface-air turbulent exchange over decades. However, different methods may produce significant differences and errors in their results. In this paper, the observational data of automatic weather station (AWS) and eddy correlation system (EC) from Naqu Station of Plateau Climate and Environment in the Norther Tibetan Plateau from September 2013 to August 2014 were used to calculate turbulent fluxes by the eddy covariance, the aerodynamic method, the combination methodand the mass transfer method and analysis the consistency and difference among the calculated results. The results show that the characteristics of turbulent fluxes calculated by different methods have obvious differences. The combination method satisfies the energy balance relationship. However, the turbulent fluxes appear to be abnormally unstable during the morning and evening. The turbulent fluxes calculated by the aerodynamic method have the highest correlation with the turbulent fluxes calculated by the eddy correlation method. But when the atmospheric stability parameter is close to zero, the calculation result is unstable. When the difference between the surface temperature and the air temperature is less than zero, the flux data calculated by the mass transfer method show obvious divergence. But this method is simple in principle and suitable for field stations which have few observation instruments and incomplete meteorological observation stations. The mean deviation of the turbulent flux calculated by the aerodynamic method and the combination method is smaller, while the average deviation of the turbulent flux calculated by the mass transfer method is larger. The results of this study provide reference for the use of these methods. Besides, the results of this study provide a reasonable basis for the establishment of long time flux series. Finally this study will help us to understand the interaction between the surface and the atmosphere.
Key words: Qinghai-Tibetan Plateau    alpine meadow    turbulent flux    calculation method    difference
收稿日期: 2017-07-12 出版日期: 2018-04-28
ZTFLH:  P404  
基金资助: 中国科学院战略性先导科技专项(XDA2006010101);国家自然科学基金项目(91537101,41661144043);中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC019)
通讯作者: 胡泽勇,E-mail:zyhu@lzb.ac.cn     E-mail: zyhu@lzb.ac.cn
作者简介: 严晓强(1992),男,四川简阳人,硕士研究生,主要从事陆面过程研究.E-mail:xqyan4565@sina.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
严晓强
胡泽勇
孙根厚
谢志鹏

引用本文:

严晓强, 胡泽勇, 孙根厚, 谢志鹏. 那曲高寒草地上四种地表通量计算方法的对比[J]. 高原气象, 2018, 37(2): 358-370.

YAN Xiaoqiang, HU Zeyong, SUN Genhou, XIE Zhipeng. Comparison of Four Methods for Calculating Surface Fluxeson Alpine Grassland at Naqu. Plateau Meteorology, 2018, 37(2): 358-370.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00067        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/358

Businger J A, Wyngaard J C, Izumi Y, et al, 1971. Flux-profile relationships in the atmospheric surface layer[J]. J Atmos Sci, 28(28):181-189.
Culf A D, Foken T, Gash J H C, 2004. The energy balance closure problem[M]. Vegetation, Water, Humans and the Climate. Springer Berlin Heidelberg:159-166.
Chen L, Reiter E R, Feng Z, 1985. The atmospheric heat source over the Tibetan Plateau:May-August 1979[J]. Mon Wea Rev, 113(10):1771-1790.
Dyer A J, 1974. A review of flux-profile relationships[J]. Bound-Layer Meteor, 7(3):363-372.
Gentine P, Entekhabi D, Heusinkveld B, 2012. Systematic errors in ground heat flux estimation and their correction[J]. Water Resour Res, 48(9):9541. DOI:10.1029/2010WR010203.
Sun R, Liu C, 2003. A review on research of land surface water and heat fluxes[J]. Chinese J Appl Ecology, 14(3):434-438.
Thom A S, Stewart J B, Oliver H R, et al, 1975. Comparison of aerodynamic and energy budget estimates of fluxes over a pine forest[J]. Quart J Roy Meteor Soc, 101(427):93-105.
Tanaka K, Ishikawa H, Hayashi T, et al, 2001. Surface energy budget at Amdo on the Tibet Plateau using GAME/Tibet IOP98 data[J]. J Meteor Soc Japan, 79(1B):505-517.
Yaglom A M, 1977. Comments on wind and temperature flux-profile relationships[J]. Bound-Layer Meteor, 11(1):89-102.
Yao J M, Zhao L, Ding Y J, et al, 2008. The surface energy budget and evapotranspiration in the Tanggula region on the Tibetan Plateau[J]. Cold Regions Sci Technol, 52(3):326-340.
陈家宜, 范邵华, 赵传峰, 等, 2006. 涡旋相关法测定湍流通量偏低的研究[J]. 大气科学, 30(3):423-432. Chen J Y, Fan S H, Zhao C F, et al, 2006. The underestimation of the turbulent fluxes in Eddy Correlation techniques[J]. Chinese J Atmos Sci, 30(3):423-432.
陈万隆, 翁笃鸣, 1984. 关于青藏高原感热和潜热旬总量计算方法的初步研究[C]//青藏高原气象科学实验论文集(二). 北京:科学出版社, 35-45. Chen W L, Weng D M, 1984. Preliminary study on calculation method of sensible heat and latent heat in Tibetan Plateau[C]//Experimental papers on Meteorological Sciences of the Qinghai Tibet Plateau (2). Beijing:Science Press, 35-45.
葛骏, 余晔, 李振朝, 等, 2016. 青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J]. 高原气象, 35(3):608-620. Ge J, Yu Y, Li Z C, et al, 2016. Impacts of freeze/thaw processes on land durface rnergy gluxes in the permafrost region of Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(3):08-620. DOI:10.7522/j. issn. 1000-0534.2016.00032.
胡隐樵, 奇跃进, 1991. 组合法确定近地面层湍流通量和通用函数[J]. 气象学报, 49(1):46-53. Hu Y, Qi Y J, 1991. The combinatory method to determine the turbulent fluxes and the universal functions in the surface layer[J]. Acta Meteor Sinica, 49(1):46-53.
季国良, 时兴和, 高务祥, 2001. 藏北高原地面加热场的变化及其对气候的影响[J]. 高原气象, 20(3):239-244. Ji G L, Shi X H, Gao W X, 2001. The variation of surface heating field over northern Qinghai-Tibet Plateau and its effect on climate[J]. Plateau Meteor, 20(3):239-244.
李述训, 南卓铜, 赵林, 2002. 冻融作用对地气系统能量交换的影响分析[J]. 冰川冻土, 24(5):506-511. Li S X, Nan Z T, Zhao L, 2002. Impact of soil freezing and thawing process on thermal exchange between atmosphere and ground surface[J]. Journal Glaciology and Geocryology, 24(5):506-511.
李国平, 赵邦杰, 2002. 青藏高原总体输送系数的特征[J]. 气象学报, 60(1):60-67. Li G P, Zhao B J, 2002. Characteristics of bulk transfer coefficients over the Tibetan plateau[J]. Acta Meteor Sinica, 60(1):60-67.
李国平, 段廷扬, 吴贵芬, 2003. 青藏高原西部的地面热源强度及地面热量平衡[J]. 地理科学, 23(1):13-18. Li G P, Duan T Y, Wu G F, 2003. The intersity of surface heat source and surface heat balance on the western Qinghai-Xizang Plateau[J]. Science Geographica Sinica, 23(1):13-18.
刘鹏飞, 刘树华, 胡非, 等, 2010. 湍流通量计算方法和误差的比较研究[J]. 气象学报, 68(4):487-500. Liu P F, Liu S H, Hu F, et al, 2010. A comparison of the different methods for estimating turbulent fluxes and their errors[J]. Acta meteor Sinica, 68(4):487-500.
孙根厚, 胡泽勇, 王介民, 等, 2016. 那曲地区两种空间尺度感热通量的对比分析[J]. 高原气象, 35(2):285-296. Sun G H, Hu Z Y, Wang J M, et al, 2016. Comparison analysis of sensible heat fluxes at two spatial scales in Naqu area[J]. Plateau Meteor, 35(2):285-296. DOI:10.7522/j. issn. 1000-0534.2015.00088.
王超, 韦志刚, 李振朝, 2010. 敦煌戈壁气象塔站资料的质量控制[J]. 干旱气象, 28(2):121-127. Wang C, Wei Z G, Li Z C, 2010. A quality control routine for Dunhuang Gobi meteorology tower data[J]. J Arid Meteor, 28(2):121-127.
万云霞, 张宇, 张瑾文, 等, 2017. 感热变化对东亚地区大气边界层高度的影响[J]. 高原气象, 36(1):173-182. Wan Y X, Zhang Y, Zhang J W, et al, 2017. Influence of sensible heat on planetary boundary layer height in East Asia[J]. Plateau Meteor, 36(1):173-182. DOI:10.7522/j. issn. 1000-0534.2016.00001.
阳坤, 郭晓峰, 武炳义, 2010. 青藏高原地表感热通量的近期变化趋势[J]. 中国科学:地球科学, 40(7):923-932. Yang K, Guo X F, Wu B Y, 2010. Recent trends in surface sensible heat flux on the Tibetan Plateau[J]. Sci China Earth Sci, 40(7):923-932.
杨娟, 周广胜, 王云龙, 等, 2006. 基于变分方法的内蒙古典型草原水热通量估算[J]. 应用生态学报, 17(11):2046-2051. Yang J, Zhou G S, Wang Y L, et al, 2006. Estimation of sensible and latent heat fluxes of typical steppe in inner Mongolia based on variational method[J]. Chinese J Appl Ecology, 17(11):2046-2051.
杨耀先, 李茂善, 胡泽勇, 等, 2014. 藏北高原高寒草甸地表粗糙度对地气通量的影响[J]. 高原气象, 33(3):626-636. Yang Y X, Li M S, Hu Z Y, et al, 2014. Influence of surface roughness on surface-air fluxes in alpine meadow over the Norther Qinghai-Xizang Plateau[J]. Plateau Meteor, 33(3):626-636. DOI:10.7522/j. issn. 1000-0534.2013.00199.
[1] 苏东生, 胡秀清, 文莉娟, 赵林, 李照国. 青海湖热力状况对气候变化响应的数值研究[J]. 高原气象, 2018, 37(2): 394-405.
[2] 李宏毅, 肖子牛, 朱玉祥. 藏东南草地下垫面地气通量交换日变化的数值模拟[J]. 高原气象, 2018, 37(2): 443-454.
[3] 高冠龙, 冯起, 张小由, 鱼腾飞. 黑河下游影响荒漠河岸胡杨林蒸腾的冠层与大气耦合分析[J]. 高原气象, 2018, 37(1): 234-239.
[4] 高冠龙, 冯起, 张小由, 鱼腾飞. 蒸散发模型结合微气象数据模拟陆面蒸散发研究进展[J]. 高原气象, 2017, 36(6): 1630-1637.
[5] 许启慧, 范引琪, 井元元, 杜康云, 张金龙, 刘金平. 1972—2013年河北省大气环境容量的气候变化特征分析[J]. 高原气象, 2017, 36(6): 1682-1692.
[6] 陈丽晶, 张镭, 梁捷宁, 周旭. 半干旱区不同下垫面大气湍流通量比较分析[J]. 高原气象, 2017, 36(5): 1325-1335.
[7] 李晓霞, 黄涛, 王兴, 梁东升. 兰州新区近地层风场时空特征分析[J]. 高原气象, 2017, 36(4): 1001-1009.
[8] 高世仰, 张杰, 罗琦. 青藏高原非均匀下垫面热力输送系数的估算[J]. 高原气象, 2017, 36(3): 596-609.
[9] 孙少波, 陈报章, 车涛, 张慧芳, 陈婧, 车明亮, 林晓凤, 郭立峰. 青藏高原季节性冻土湿度模拟及参数优化——以黑河上游为例[J]. 高原气象, 2017, 36(3): 643-656.
[10] 贾东于, 文军, 马耀明, 刘蓉, 王欣, 周娟, 陈金雷. 植被对黄河源区水热交换影响的研究[J]. 高原气象, 2017, 36(2): 424-435.
[11] 张新科, 陈晋北, 余晔, 赵素平, 贾伟. 雷暴系统影响下的黄土高原塬区微气象特征研究[J]. 高原气象, 2017, 36(2): 384-394.
[12] 李怀香, 刘绍民, 施生锦, 徐自为, 朱忠礼. 国产光学型大孔径闪烁仪的技术性能分析[J]. 高原气象, 2017, 36(2): 575-585.
[13] 徐安伦, 李建, 彭浩, 孙绩华. 洱海湖滨农田下垫面大口径闪烁仪与涡动相关仪测量的湍流热通量对比分析[J]. 高原气象, 2017, 36(1): 98-106.
[14] 万云霞, 张宇, 张瑾文, 彭艳秋. 感热变化对东亚地区大气边界层高度的影响[J]. 高原气象, 2017, 36(1): 173-182.
[15] 刘勇洪, 房小怡, 栾庆祖. 基于卫星数据与GIS技术的北京地区粗糙度长度估算研究[J]. 高原气象, 2016, 35(6): 1625-1638.