Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 382-393    DOI: 10.7522/j.issn.1000-0534.2017.00037
论文     
SR-50A超声雪深仪在西藏高原的适用性研究
除多1,2, 边巴次仁1,2, 扎珠1,2, 德吉央宗1,2
1. 西藏高原大气环境科学研究所, 西藏 拉萨 850000;
2. 西藏自治区气象局, 西藏 拉萨 850000
Applicability Study of SR-50A Ultrasonic Snow Depth Sensor for Snow Measurement in Tibetan Plateau
CHU Duo1,2, BIANBA Ciren1,2, ZHA Zhu1,2, DEJI Yangzong1,2
1. Tibet Institute of Plateau Atmospheric and Environmental Sciences, Lhasa 850000, Tibet, China;
2. Tibet Meteorological Bureau, Lhasa 850000, Tibet, China
 全文: PDF(5970 KB)  
摘要: 为满足应急气象服务需求,2013-2014年在西藏自治区强降雪和雪灾易发及重点积雪区域气象站安装了4套SR-50A超声波雪深观测系统,首次实现了西藏高原雪深自动观测和数据实时传输。利用12:30加密和08:00(北京时)常规人工雪深观测数据对4个站SR-50A雪深观测数据进行了评估和对比分析。结果表明:(1)SR-50A与人工观测的平均雪深偏差范围在±2 cm之内。雪深越大,平均均方根误差越小,观测精度越高。SR-50A传感器更为适合雪深较大地区的积雪监测。(2)SR-50A对西藏高原的雪深具有较好的监测能力,与人工观测雪深具有较好的一致性,4个观测点的线性相关系数在0.81~0.97,呈现极为显著的线性关系。(3)大风、局地太阳光照条件、气温和地表特征等因素通过风吹雪和融雪引起观测场内积雪分布不均匀,加之仪器是固定点观测,人工观测是观测场内3个点的雪深平均值,这些是SR-50A与人工观测雪深差异较大的主要原因。
关键词: 西藏高原积雪深度SR-50A人工观测对比分析    
Abstract: Snow depth is one of main surface meteorological observation elements and currently is mainly measured by manual observation. Due to poor real-time performance, it is difficult to meet requirements of emergency meteorological service and response. Previous study indicated that ultrasonic technology has excellent potential for snow depth measurement. Therefore, the SR-50A ultrasonic snow depth sensors developed by Campbell Scientific Company were installed from September 2013 to November 2014 at 4 meteorological stations where have often heavy snow and are prone to snow disaster and key regions of snow accumulation in Tibetan Plateau. In this study, the applicability evaluation of SR-50A snow depth in these stations was made using daily 12:30 intensive and 08:00 (Beijing Time) manually observed snow depth as ground truth data. The following are results. (1) Mean biases between SR-50A and manual snow depth are within ±2 cm. SR-50A sensors are more suitable for the measurement of higher snow depth since the larger the depth of snow, the smaller the mean root-mean-square error and the higher the observation precision. (2) SR-50A shows a good performance for monitoring snow depth in Tibetan Plateau. There is a very good agreement and highly significant linear correlation between manual and SR-50A sensor observation for snow depth. The correlation coefficients at 4 stations range from 0.81 to 0.97. (3) Wind scour, local solar radiation condition, environmental temperature and surface feature will cause spatial variability of snow cover at observation sites through wind blowing and snow melting, and manual observation in the study is not taken just adjacent to sensor installation, which are main factors resulting in these biases.
Key words: Tibetan Plateau    snow depth    SR-50A    manual observation    comparison analysis
收稿日期: 2017-01-04 出版日期: 2018-04-28
ZTFLH:  P426.63+5  
基金资助: 公益性行业(气象)科研专项(GYHY201206040,GYHY201306054);国家自然科学基金项目(41561017)
作者简介: 除多(1969),男,西藏白朗县人,正研级高工,主要从事高原卫星遥感应用研究.E-mail:chu_d22@hotmail.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
除多
边巴次仁
扎珠
德吉央宗

引用本文:

除多, 边巴次仁, 扎珠, 德吉央宗. SR-50A超声雪深仪在西藏高原的适用性研究[J]. 高原气象, 2018, 37(2): 382-393.

CHU Duo, BIANBA Ciren, ZHA Zhu, DEJI Yangzong. Applicability Study of SR-50A Ultrasonic Snow Depth Sensor for Snow Measurement in Tibetan Plateau. PLATEAU METEOROLOGY, 2018, 37(2): 382-393.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00037        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/382

Brazenec W A, 2005. Evaluation of ultrasonic snow depth sensors for automated surface observing systems (ASOS)[D]. Department of Forest, Rangeland, and Watershed Stewardship. M. S. Thesis, Colorado State University, Fort Collins, CO, 134.
Campbell Scientific, Inc, 2007. Instruction manual of SR-50a sonic ranging sensor[R/OL]. https://www.campbellsci.com/manuals.[2017-01-03].
Chu D, Xie H, Wang P, et al, 2014. Snow cover variation over the Tibetan Plateau from MODIS and comparison with ground observations[J]. J Appl Remote Sens, 8(1):084690. DOI:10.1117/1. JRS. 8.084690.
Goodison B E, Metcalfe J R, Wilson R A, et al, 1988. The Canadian automatic snow depth sensor:A performance update[C]//Proceedings of the 56th Annual Western Snow Conference, April. 19-21.
Goodison B E, Wilson B, Wu K, et al, 1984. An inexpensive remote snow-depth gauge:an assessment[C]//Proceedings of the 52nd Annual Western Snow Conference, April. 17-19.
Immerzeel W W, Droogers P, de Jong S M, et al, 2009. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing[J]. Remote Sens Environ, 113(1):40-49.
Lea J, 1998. Snowpack depth and density changes during rain on snow events at Mount Hood, Oregon[C]//International Conference on Snow Hydrology:The Integration of Physical, Chemical, and Biological Systems. 46.
Qin D H, Liu S Y, Li P J, 2006. Snow cover distribution, variability, and response to climate change in Western China[J]. J Climate, 19:1820-1833.
Ryan W A, Doesken N J, Fassnacht S R, 2008. Evaluation of ultrasonic snow depth sensors for U. S. snow measurements[J]. J Atmos Ocean Technol, 25(5):667-684.
Varhola A, Wawerla J, Weiler M, et al, 2010. A new low-cost, stand-alone sensor system for snow monitoring[J]. J Atmos Ocean Technol, 27:1973-1978.
Yao T D, Thompson L, Yang W, et al, 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2(9):663-667.
董大钧, 2013. 误差分析与数据处理[M]. 北京:清华大学出版社. Dong D J, 2013. Error analysis and data processing[M]. Beijing:Tsinghua University Press.
郭建平, 刘欢, 安林昌, 等, 2016.2001-2012年青藏高原积雪覆盖率变化及地形影响[J]. 高原气象, 35(1):24-33. Guo J P, Liu H, An L C, et al, 2016. Study on variation of snow cover and its orographic impact over Qinghai-Xizang Plateau during 2001-2012[J]. Plateau Meteor, 35(1):24-33. DOI:10.7522/j. issn. 1000-0534.2014.00140.
何丽烨, 李栋梁, 2011. 中国西部积雪日数类型划分及与卫星遥感结果的比较[J]. 冰川冻土, 33(2):237-245. He L Y, Li D L, 2011. Classification of snow cover days and comparing with satellite remote sensing data in west China[J]. Journal of Glaciology and Geocryology, 33(2):237-245.
黄鑫, 布和朝鲁, 林大伟, 等, 2017. 春季蒙古气旋活动与冬季北大西洋海温异常和欧亚大陆积雪异常的联系[J]. 高原气象, 36(3):750-762. Huang X, Buhe C L, Lin D W, et al, 2017. Relationship between spring Mongolian cyclones, the North Atlantic Sea Surface Temperature in winter and the snow depth in Eurasia[J]. Plateau Meteor, 36(3):750-762. DOI:10.7522/j. issn. 1000-0534.2016.00050.
李吉均, 郑本兴, 杨锡金, 等, 1986. 西藏冰川[M]. 北京:科学出版社, 140-148. Li J J, Zheng B X, Yang X J, et al, 1986. Glaciers in Tibet[M]. Beijing:Science Press, 1986.
梁延伟, 梁海河, 王柏林, 2012. 超声波传感器雪深测量与人工观测对比试验分析[J]. 气象科技, 40(2):198-202. Liang Y W, Liang H H, Wang B L, 2012. Comparison and analysis of snow depth records obtained by manual observation and ultrasonic sensor in different weather conditions[J]. Meteor Sci Technol, 40(2):198-202.
林志强, 2016. 南支槽对西南高原地区冬半年日降水的影响[J]. 高原气象, 35(6):1456-1463. Lin Z Q, 2016. Influence of the Southern Branch Trough on plateau of southwestern China daily precipitation in wintertime[J]. Plateau Meteor, 35(6):1456-1463. DOI:10.7522/j. issn. 1000-0534.2015.00091.
唐红玉, 李锡福, 李栋梁, 2014. 青藏高原春季积雪多、少年中低层环流对比分析[J]. 高原气象, 33(5):1190-1196. Tang H Y, Li X F, Li D L, 2014. Contrast of circulation pattern related to more and less spring snow cover over Qinghai-Xizang Plateau[J]. Plateau Meteor, 33(5):1190-1196. DOI:10.7522/j. issn. 1000-0534.2013.00125.
王道远, 陈方兴, 2012. SXH1-1 型超声雪深测量仪在冬季测雪中的应用[J]. 黑龙江科技信息(18):73. Wang D Y, Chen F X, 2012. Application of SXH1-1 ultrasonic snow depth sensors in winter snow measurement[J]. Heilongjiang Science and Technology Information (18):73.
魏凤英, 2007. 现代气候统计诊断与预测技术[M]. 北京:气象出版社. Wei F Y, 2007. Modern climatic statistical diagnosis and prediction technology[M]. Beijing:China Meteorological Press.
肖瑶, 赵林, 李韧, 等, 2013. 唐古拉地区超声雪深传感器SR-50监测研究[J]. 应用气象学报, 24(3):342-348. Xiao Y, Zhao L, Li R, et al, 2013. The evaluation of SR-50 for snow depth measurements at Tanggula Area[J]. J Appl Meteor Sci, 24(3):342-348.
徐小玉, 王亚非, 2016. ENSO对青藏高原雪深的影响及持续性分析[J]. 高原气象, 35(1):1-12. Xu X Y, Wang Y F, 2016. Analysis of the influence of ENSO on snow depth over Qinghai-Xizang Plateau and its continuity[J]. Plateau Meteor, 35(1):1-12. DOI:10.7522/j. issn. 1000-0534.2014.00128.
姚君, 马超, 2015. 人工雪深和自动雪深观测数据差异的原因分析[J]. 黑龙江气象, 32(2):44. Yao J, Ma C, 2015. Analysis on causes of the difference of snow depth observation data from manual and automatic approaches[J]. Helongjiang Meteorology, 32(2):44.
中国气象局, 2003. 地面气象观测规范[M]. 北京:气象出版社, 61-63. China Meteorological Administration, 2003. Specification of surface air observation[M]. Beijing:China Meteorological Press, 61-63.
周利敏, 陈海山, 彭丽霞, 等, 2016. 青藏高原冬春雪深年代际变化与南亚高压可能联系[J]. 高原气象, 35(1):13-23. Zhou L M, Chen H S, Peng L X, et al, 2016. Possible connection between interdecadal variations of snow depth in winter and spring over Qinghai-Xizang Plateau and South Asia High in summer[J]. Plateau Meteor, 35(1):13-23. DOI:10.7522/j. issn. 1000-0534.2014.00152.
周扬, 徐维新, 白爱娟, 等, 2017. 青藏高原沱沱河地区动态融雪过程及其与气温关系分析[J]. 高原气象, 36(1):24-32. Zhou Y, Xu W X, Bai A J, et al, 2017. Dynamic snow-melting process and its relationship with air temperature in Tuotuohe, Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(1):24-32. DOI:10.7522/j. issn. 1000-0534.2016.00013.
[1] 边晴云, 吕世华, 陈世强, 文莉娟, 李照国, 潘永洁, 方雪薇. 黄河源区降雪对不同冻融阶段土壤温湿变化的影响[J]. 高原气象, 2016, 35(3): 621-632.
[2] 张佳华, 吴杨, 姚凤梅, 魏文寿. 利用卫星遥感和地面实测积雪资料分析近年新疆积雪特征[J]. 高原气象, 2008, 27(3): 551-557.
[3] 雷俊, 方之芳. 青海地区常规观测积雪资料对比及积雪变化趋势研究[J]. 高原气象, 2008, 27(1): 58-67.
[4] 刘华强, 孙照渤, 王举, 闵锦忠 . 青藏高原东西部积雪效应的模拟对比分析 [J]. 高原气象, 2005, 24(3): 357-365.
[5] 彭京备, 陈烈庭, 张庆云 . 青藏高原异常雪盖和ENSO的多尺度变化及其与中国夏季降水的关系 [J]. 高原气象, 2005, 24(3): 366-377.
[6] 董安祥, 郭慧, 王丽萍, 梁天刚. 近40年北疆年积雪日数变化的CEOF分析[J]. 高原气象, 2004, 23(6): 936-940.
[7] 高荣, 韦志刚, 董文杰, 王澄海, 钟海玲 . 20世纪后期青藏高原积雪和冻土变化及其与气候变化的关系 [J]. 高原气象, 2003, 22(2): 191-196.
[8] 罗文芳. 青藏高原积雪异常与贵州东、西部旱、寒灾害关系的初步分析[J]. 高原气象, 2001, 20(3): 340-344.