Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 394-405    DOI: 10.7522/j.issn.1000-0534.2017.00069
论文     
青海湖热力状况对气候变化响应的数值研究
苏东生1,2, 胡秀清3, 文莉娟1, 赵林1, 李照国1
1. 中国科学院西北生态环境资源研究院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049;
3. 国家卫星气象中心, 北京 100081
Simulation of the Response of Qinghai Lake Thermal Conditions to Climate Change
SU Dongsheng1,2, HU Xiuqing3, WEN Lijuan1, ZHAO Lin1, LI Zhaoguo1
1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. University of Chinese Academy of Science, Beijing 100049, China;
3. National Satellite Meteorological Centre, Beijing 100081, China
 全文: PDF(7848 KB)  
摘要: 湖泊对气候变化非常敏感,是气候变化的指示器。青藏高原湖泊众多,但由于观测数据的缺乏,目前对全球变暖背景下高原湖泊热力状况的研究依然不足且多为短期研究。利用中国科学院青藏高原研究所(ITPCAS)开发的中国区域高时空分辨率地面气象要素驱动数据集、MODIS地表温度数据、青海湖浮标观测数据,分析了Freshwater Lake Model(简称Flake模式)在青海湖的适用性,揭示了青海湖热力状况对气候变化的响应。结果表明,Flake模式能够很好的模拟出青海湖的热力状况,但对夏季与秋季的湖表面水温(特别是夜间)模拟偏高,部分是驱动数据误差造成的,修正驱动数据后模拟效果得到改善。对1989-2012年Flake模拟的湖表面温度与ITPCAS数据不同驱动要素之间的年际变化趋势与相关性进行分析,发现青海湖表面温度呈现上升趋势,与气温、向下长波辐射有较好的正相关性,而与风速负相关。内部热力状况的模拟结果显示,青海湖混合层温度基本全年呈上升趋势,其中5、6月及12月增温最显著;湖泊底层温度在5月以及12月的两次季节性翻转时期呈上升趋势,在6-10月湖水分层期呈下降趋势,分层期湖泊上层温度升高会加强湖水层结稳定性,使湖水混合减弱,导致底层温度下降。
关键词: 青藏高原Flake模式青海湖数值模拟气候变化    
Abstract: Lake is a very sensitive indicator to climate change. There are thousands of lakes on Qinghai-Tibetan Plateau, about 1 200 of them have an area larger than 1 km2, but few observation data of lakes are available, which makes the thermal condition of plateau lakes under the background of climate warming far from well understood, at the same time, most of the studies on plateau lakes focused on short-term research. In this study, the China Meteorological Forcing Dataset developed by Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS), MODIS LST data and buoy observation data were used to analysis the applicability of Freshwater Lake Model (Flake) at Qinghai Lake and reveal the response of thermal condition of Qinghai Lake to climate change. The results show that Flake have good abilities to capture the thermal characteristics of Qinghai Lake and have a good simulation to the seasonal variations of the lake surface temperature. But some positive deviation was found in summer and autumn (especially in nighttime), part of the deviation was caused by the bias of forcing data, after a simple correction to temperature and wind speed of the forcing data, the deviation of the simulation result was partly reduced. The comparison and analysis of interannual variation trend and correlation between lake surface temperature simulated by Flake and meteorological factors of ITPCAS forcing data from 19892012 found there is a warming trend in lake surface temperature, which have a positive correlation with air temperature and downward longwave radiation, and a negative correlation with wind speed, indicating that the air temperature warming plays a key role in lake surface temperature increase. The simulation of inner lake thermal condition revealed that the mixed-layer temperature of Qinghai Lake presents an increase trend almost all the year round, which is most obviously in May and June. For the bottom of the lake, the increase trend only happens in May and December, it is also the seasonal overturn period of the lake, and a decrease trend happens from June to October when the lake is in stratification period. This pattern may caused by the increase of stratified stability due to the temperature increase of the up-layer water in stratification period.
Key words: Qinghai-Tibetan Plateau    Flake model    Qinghai Lake    numerical simulation    climate change
收稿日期: 2017-07-04 出版日期: 2018-04-28
ZTFLH:  P404  
基金资助: 国家自然科学基金项目(91637107,41475011);中德中心国际合作项目(GZ1259)
通讯作者: 文莉娟,E-mail:wlj@lzb.ac.cn     E-mail: wlj@lzb.ac.cn
作者简介: 苏东生(1989),男,兰州人,硕士研究生,主要从事湖泊模拟研究.E-mail:sds@lzb.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苏东生
胡秀清
文莉娟
赵林
李照国

引用本文:

苏东生, 胡秀清, 文莉娟, 赵林, 李照国. 青海湖热力状况对气候变化响应的数值研究[J]. 高原气象, 2018, 37(2): 394-405.

SU Dongsheng, HU Xiuqing, WEN Lijuan, ZHAO Lin, LI Zhaoguo. Simulation of the Response of Qinghai Lake Thermal Conditions to Climate Change. PLATEAU METEOROLOGY, 2018, 37(2): 394-405.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00069        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/394

Adrian R, O'Reilly C M, Zagarese H, et al, 2009. Lakes as sentinels of climate change[J]. Limnology and oceanography, 54(6):2283-2297.
Chen Y, Yang K, He J, et al, 2011. Improving land surface temperature modeling for dry land of China[J]. J Geophys Res, 116(D20):D20104. DOI:10.1029/2011JD015921.
Crosman E T, Horel J D, 2009. MODIS-derived surface temperature of the Great Salt Lake[J]. Remote Sens Environ, 113(1):73-81.
Dong H, Song Y, 2011. Shrinkage history of Lake Qinghai and causes during the last 52 years[C]//Water Resource and Environmental Protection (ISWREP), 2011 International Symposium on. IEEE, 1:446-449.
Donlon C J, Minnett P J, Gentemann C, et al, 2002. Toward improved validation of satellite sea surface skin temperature measurements for climate research[J]. J Climate, 15(4):353-369.
Duan A, Xiao Z, 2015. Does the climate warming hiatus exist over the Tibetan Plateau?[J]. Scientific Reports, 5:13711.
Duan A M, Wu G X, 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dyn, 24(7/8):793-807.
Gerken T, Biermann T, Babel W, et al, 2014. A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau[J]. Theor Appl Climatol, 117(1/2):149-167.
Guo D, Wang H, 2012. The significant climate warming in the northern Tibetan Plateau and its possible causes[J]. Int J Climatol, 32(12):1775-1781.
Haginoya S, Fujii H, Kuwagata T, et al, 2009. Air-lake interaction features found in heat and water exchanges over Nam Co on the Tibetan Plateau[J]. Sola, 5:172-175.
Hansen J, Ruedy R, Sato M, et al, 2012. Global temperature in 2011, trends, and prospects[J]. Goddard Institute for Space Studies, New York. Available at http://data.giss.nasa.gov/gistemp.[2017-07-02]
Hansen J, Sato M, Ruedy R, 2013. Global temperature update through 2012[J]. National Aeronautics and Space Administration, Goddard Institute for Space Studies. http://www.nasa.gov/pdf/719139main_2012_GISTEMP_summary.pdf.[2017-07-02]
Kheyrollah P H, Duguay C R, Martynov A, et al, 2012. Simulation of surface temperature and ice cover of large northern lakes with 1-D models:a comparison with MODIS satellite data and in situ measurements[J]. Tellus A:Dynamic Meteorology and Oceanography, 64(1):17614. DOI:10.3402/tellusa. v64i0.17614.
Kirillin G, 2010. Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes[J]. Boreal Environ Res, 15(2):279-293.
Kirillin G, Wen L, Shatwell T, 2017. Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands[J]. Hydrol Earth Sys Sci, 21(4):1895.
Kitaigorodskii S A, Mirokolskii Y Z, 1970. On the theory of active layer of the open ocean[J]. Izv Akad Nauk SSSR, Fiz Atmos Okeana, 6(2):177-188.
La Z, Yang K, Wang J, et al, 2016. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau[J]. Geophys Res Atmos, 121, 7578-7591, doi:10.1002/2015JD024523.
Lei Y, Yang K, Wang B, et al, 2014. Response of inland lake dynamics over the Tibetan Plateau to climate change[J]. Climatic Change, 125(2):281-290.
Li Z, Lyu S, Ao Y, et al, 2015. Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau[J]. Atmos Res, 155:13-25.
Liao J, Shen G, Li Y, 2013. Lake variations in response to climate change in the Tibetan Plateau in the past 40years[J]. International Journal of Digital Earth, 6(6):534-549.
Ma R H, Yang G S, Duan H T, et al, 2011. China's lakes at present:number, area and spatial distribution[J]. Science China Earth Sciences, 54(2):283-289.
Miner T J, Fritsch J M, 1997. Lake-effect rainevents[J]. Mon Wea Rev, 125(12):3231-3248.
Minnett P J, 2003. Radiometric measurements of the sea-surface skin temperature:The competing roles of the diurnal thermocline and the cool skin[J]. Int J Remote Sens, 24(24):5033-5047.
Mironov D, Heise E, Kourzeneva E, et al, 2010. Implementation of the lake parameterisation saheme Flake into the numerical weather prediction model COSMO[J]. Boreal Environment Research, 15(2):218-230.
Mironov D, 2008. Parameterization of lakes in numerical weather prediction Part 1:Description of a lake model. COSMO Tech. Rep. No. 11. Deutscher Wetterdienst Offenbach am Main, Germany.
O'Reilly C M, Sharma S, Gray D K, et al, 2015. Rapid and highly variable warming of lake surface waters around the globe[J]. Geophys Res Lett, 42(24):10773-10781.
Robinson I S, Wells N C, Charnock H, 1984. The sea surface thermal boundary layer and its relevance to the measurement of sea surface temperature by airborne and spaceborne radiometers[J]. Int J Remote Sens, 5(1):19-45.
Schmid M, Hunziker S, Wüest A, 2014. Lake surface temperatures in a changing climate:A global sensitivity analysis[J]. Climatic change, 124(1/2):301-315.
Thiery W, Martynov A, Darchambeau F, et al, 2014. Understanding the performance of the FLake model over two African Great Lakes[J]. Geoscientific Model Development, 7:317-337.
Wan Z, Zhang Y, Zhang Q, et al, 2004. Quality assessment and validation of the MODIS global land surface temperature[J]. Int J Remote Sens, 25(1):261-274.
Wen L, Lü S, Li Z, et al, 2015. Impacts of the two biggest lakes on local temperature and precipitation in the Yellow River source region of the Tibetan Plateau[J]. Adv Meteor, (D14):ACH 9-1-ACH 9-6.
Wen L J, Lü S H, Kirillin G, et al, 2016. Air-lake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands[J]. Tellus A:Dynamic Meteorology and Oceanography, 68(1):31091. DOI:10.3402/tellusa. v68.31091.
Yang K, Wu H, Qin J, et al, 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J]. Global and Planetary Change, 112:79-91.
Ye D Z, Gao Y X, 1979. The meteorology of the Qinghai-Xizang (Tibet) plateau[J]. Beijing:Science Press, 1-278.
Yanai M, Li C, Song Z, 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J]. J Meteor Soc Japan, 70(1B):319-351.
Zhang G, Xie H, Kang S, et al, 2011. Monitoring lake level changes on the Tibetan Plateau using ICE Sat altimetry data (2003-2009)[J]. Remote Sens Environ, 115(7):1733-1742.
Zhang G, Yao T, Xie H, et al, 2014. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J]. J Geophys Res:Atmospheres, 119(14):8552-8567.
白爱娟, 黄融, 程志刚, 2014. 气候变暖情景下的青海湖水位变化[J]. 干旱区研究, 31(5):792-797. Bai A J, Huang R, Cheng Z G, 2014. Change of water level of the Qinghai Lake under climate warming[J]. Arid Zone Res. 31(5):792-797.
贲海荣, 周顺武, 乔钰, 等, 2017. 一个新的青藏高原热力指数的构建及其应用[J]. 高原气象, 36(6):1487-1498. Ben H R, Zhou S W, Qiao Y, et al, 2017. Construction and application of a new index about the Qinghai-Tibetan Plateau heating[J]. Plateau Meteor, 36(6):1487-1498. DOI:10.7522/j. issn. 1000-0534.2017.00009.
陈万隆, 孙卫国, 周竞南, 等, 1995. 青海湖湖陆风的数值研究[J]. 湖泊科学, 7(4):289-296. Chen W L, Sun W G, Zhou J N, 1995. A numerical simulation on Lake-Land breeze of Qinghai Lake[J]. J Lake Sci, 7(4):289-296.
方楠, 阳坤, 拉珠, 等, 2017. WRF 湖泊模型对青藏高原纳木错湖的适用性研究[J]. 高原气象, 36(3):610-618. Fang N, Yang K, La Z, et al, 2017. Research on the application of WRF-lake modeling at Nam Co Lake on the Qinghai-Tibetan Plateau[J]. Plateau Meteor, 36(3):610-618. DOI:10.7522/j. issn. 1000-0534.2016.00038.
高世仰, 张杰, 罗琦, 2017. 青藏高原非均匀下垫面热力输送系数的估算[J]. 高原气象, 36(3):596-609. Gao S Y, Zhang J, Luo Q, 2017. Estimation of the heat transfer coefficient over inhomogeneous underlying surface on the Qinghai-Tibetan Plateau[J]. Plateau Meteor, 36(3):596-609. DOI:10.7522/j. issn. 1000-0534.2016.00060.
井彦明, 谭世祥, 李铜基, 等, 2003. 适合我国青海湖环境的全自动水文气象浮标系统[J]. 海洋技术, 22(4):1-6. Jing Y M, Tan S X, Li T J, et al, 2003. A device for simulating marine environment and seawater freezing and its experiment in laboratory[J]. Ocean Technol, 22(4):1-6.
何杰, 阳坤, 2011. 中国区域高时空分辨率地面气象要素驱动数据集[Z]. 中国科学院寒区旱区科学数据中心, 2011. He J, Yang K, 2011. China meteorological forcing dataset[Z]. Cold and Arid Regions Science Data Center at Lanzhou. DOI:10.3972/westdc. 002.2014. db.
吕雅琼, 杨显玉, 马耀明, 2007. 夏季青海湖局地环流及大气边界层特征的数值模拟[J]. 高原气象, 26(4):686-692. Lü Y Q, Yang X Y, Ma Y M, 2007. Numerical simulation of summer circulation and atmospheric boundary layer characteristics over Qinghai Lake[J]. Plateau Meteor, 26(4):686-692.
李照国, 吕世华, 文莉娟, 等, 2016. 一次干冷空气过境对鄂陵湖地区大气边界层过程的影响[J]. 高原气象, 35(5):1200-1211. Li Z G, Lü S H, Wen L J, et al, 2016. Influence of incursion of dry cold air on atmospheric boundary layer process in Ngoring Lake Basin[J]. Plateau Meteor, 35(5):1200-1211. DOI:10.7522/j. issn. 1000-0534.2015.00076.
潘保田, 李吉均, 1996. 青藏高原:全球气候变化的驱动机与放大器 Ⅲ. 青藏高原隆起对气候变化的影响[J]. 兰州大学学报:自然科学版, 32(1):108-115. Pan B T, Li J J, 1996. Qinghai-Tibetan Plateau:A driver and amplifier of the global climatic change Ⅲ. The effects of the uplift of Qinghai-Tibetan Plateau on climatic changes[J]. Journal of Lanzhou University (natural science), 32(1):108-115.
秦伯强, 黄群, 1998. 青海湖热力状况的模拟与未来情景之研究[J]. 湖泊科学, 10(3):25-31. Qin B Q, Huang Q, 1998. The simulation of thermal properties of Qinghai Lake and the potential change in the future[J]. J Lake Sci, 10(3):25-31.
时兴合, 李生辰, 安迪, 等, 2010. 青海湖水面蒸发量变化的研究[J]. 气候与环境研究, 15(6):787-796. Shi X H, Li S C, An D, et al, 2010. A study of the change of Qinghai Lake evaporation[J]. Climatic Environ Res, 15(6):787-796.
万玮, 肖鹏峰, 冯学智, 等, 2014. 卫星遥感监测近30年来青藏高原湖泊变化[J]. 科学通报, 59(8):701-714. Wan W, Xiao P F, Feng X Z, et al, 2014. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data[J]. Chinese Sci Bull, 59(8):701-714.
许鲁君, 刘辉志, 2015. 云贵高原洱海湖泊效应的数值模拟[J]. 气象学报, 73(4):789-802. Xu L J, Liu H Z, 2015. Numerical simulation of the lake effect of Erhai in the Yunnan-Guizhou Plateau area[J]. Acta Meteor Sinica, 73(4):789-802.
闫立娟, 郑绵平, 魏乐军, 2016. 近 40 年来青藏高原湖泊变迁及其对气候变化的响应[J]. 地学前缘, 23(4):310-323. Yan L J, Zheng M P, Wei L J, 2016. Change of the lakes in Tibetan Plateau and its response to climate in the past forty years[J]. Earth Science Frontiers, 23(4):310-323.
杨显玉, 文军, 2012. 扎陵湖和鄂陵湖大气边界层特征的数值模拟[J]. 高原气象, 31(4):927-934. Yang X Y, Wen J, 2012. Numerical simulation of characteristic of atmospheric boundary layer over Lake Gyaring and Ngoring[J]. Plateau Meteor, 31(4):927-934.
伊万娟, 李小雁, 崔步礼, 等, 2010. 青海湖流域气候变化及其对湖水位的影响[J]. 干旱气象, 28(4):375-383. Yi W J, Li X Y, Cui B L, et al, 2010. Climate change and impact on water level of the Qinghai Lake watershed[J]. J Arid Meteor, 28(4):375-383.
[1] 严晓强, 胡泽勇, 孙根厚, 谢志鹏. 那曲高寒草地上四种地表通量计算方法的对比[J]. 高原气象, 2018, 37(2): 358-370.
[2] 李宏毅, 肖子牛, 朱玉祥. 藏东南草地下垫面地气通量交换日变化的数值模拟[J]. 高原气象, 2018, 37(2): 443-454.
[3] 高冠龙, 冯起, 张小由, 鱼腾飞. 黑河下游影响荒漠河岸胡杨林蒸腾的冠层与大气耦合分析[J]. 高原气象, 2018, 37(1): 234-239.
[4] 高冠龙, 冯起, 张小由, 鱼腾飞. 蒸散发模型结合微气象数据模拟陆面蒸散发研究进展[J]. 高原气象, 2017, 36(6): 1630-1637.
[5] 许启慧, 范引琪, 井元元, 杜康云, 张金龙, 刘金平. 1972—2013年河北省大气环境容量的气候变化特征分析[J]. 高原气象, 2017, 36(6): 1682-1692.
[6] 陈丽晶, 张镭, 梁捷宁, 周旭. 半干旱区不同下垫面大气湍流通量比较分析[J]. 高原气象, 2017, 36(5): 1325-1335.
[7] 李晓霞, 黄涛, 王兴, 梁东升. 兰州新区近地层风场时空特征分析[J]. 高原气象, 2017, 36(4): 1001-1009.
[8] 高世仰, 张杰, 罗琦. 青藏高原非均匀下垫面热力输送系数的估算[J]. 高原气象, 2017, 36(3): 596-609.
[9] 孙少波, 陈报章, 车涛, 张慧芳, 陈婧, 车明亮, 林晓凤, 郭立峰. 青藏高原季节性冻土湿度模拟及参数优化——以黑河上游为例[J]. 高原气象, 2017, 36(3): 643-656.
[10] 贾东于, 文军, 马耀明, 刘蓉, 王欣, 周娟, 陈金雷. 植被对黄河源区水热交换影响的研究[J]. 高原气象, 2017, 36(2): 424-435.
[11] 张新科, 陈晋北, 余晔, 赵素平, 贾伟. 雷暴系统影响下的黄土高原塬区微气象特征研究[J]. 高原气象, 2017, 36(2): 384-394.
[12] 李怀香, 刘绍民, 施生锦, 徐自为, 朱忠礼. 国产光学型大孔径闪烁仪的技术性能分析[J]. 高原气象, 2017, 36(2): 575-585.
[13] 徐安伦, 李建, 彭浩, 孙绩华. 洱海湖滨农田下垫面大口径闪烁仪与涡动相关仪测量的湍流热通量对比分析[J]. 高原气象, 2017, 36(1): 98-106.
[14] 万云霞, 张宇, 张瑾文, 彭艳秋. 感热变化对东亚地区大气边界层高度的影响[J]. 高原气象, 2017, 36(1): 173-182.
[15] 刘勇洪, 房小怡, 栾庆祖. 基于卫星数据与GIS技术的北京地区粗糙度长度估算研究[J]. 高原气象, 2016, 35(6): 1625-1638.