Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 469-480    DOI: 10.7522/j.issn.1000-0534.2017.00036
论文     
NCEP CFSv2对北半球夏季中高纬阻塞高压的预测检验
周宁芳1, 贾小龙2,3
1. 国家气象中心, 北京 100081;
2. 南京信息工程大学 气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;
3. 国家气候中心/中国气象局气候研究开放实验室, 北京 100081
Check Analysis of the Prediction of Northern Hemisphere Blocking in Summer by NCEP CFSv2
ZHOU Ningfang1, JIA Xiaolong2,3
1. National Meteorological Center, Beijing 100081, China;
2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
3. National Climate center, Beijing 100081, China
 全文: PDF(19504 KB)  
摘要: 利用1999-2010年共12年NCEP CFSv2(NCEP Climate Forecast System version 2)每天4个时次对未来45天预测的回报数据,检验了CFSv2模式对北半球夏季(6-8月)中高纬乌拉尔山区域(10°E-70°E)和贝加尔湖-鄂霍次克海区域(110°E-180°E)阻塞高压及其与之相联系的东亚气候的预测能力。分析结果显示,CFSv2可以较好的模拟夏季北半球阻塞高压发生频率的纬向分布特征,但随着预测时效的增加阻塞发生的频率不断降低。CFSv2对两个区域阻塞预测的命中率在7天时效内为50%左右,接近2周之后基本上没有技巧。CFSv2对区域阻塞事件的预测技巧要低于区域阻塞的技巧,贝加尔湖-鄂霍次克海区域阻塞事件的技巧略低于乌拉尔山区域。CFSv2对阻塞爆发和结束的预测超过7天左右,基本没有预测技巧,对乌拉尔山区域阻塞结束日的预测技巧要低于阻塞爆发日的预测技巧。CFSv2在可用的预测时效内可以较好再现与区域阻塞相联系的环流形势以及东亚地区气温、降水异常的分布特征,尤其是夏季乌拉尔山和鄂霍茨克海地区发生阻塞时我国长江流域及其以南地区降水容易偏多的特征。
关键词: 阻塞北半球夏季CFSv2预测技巧    
Abstract: Daily output data from 12-year retrospective forecasts by the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) was analyzed to understand the skill of forecasting summertime atmospheric blocking in the Northern Hemisphere and associated climate anomalies in East Asia. Prediction skills of sector blocking, sector-blocking episodes, and blocking onset/decay were assessed with a focus on the Ural mountains sector (10°E-70°E) and the Baikal-Okhotsk sector (110°E-180°) based on the hit rate, the false alarm rate, the bias score, and the HSS skill scores. Circulation and climate patterns in East Asia associated with blocking in the CFSv2 predictions were also examined. The CFSv2 captures the observed features of longitudinal distribution of blocking activity well, but underestimates blocking frequency and shows a decreasing trend in blocking frequency with increasing forecast lead time. Skillful forecast (if taking the hit rate of 50% as a criterion) can be obtained up to 7 days in both the Ural mountains (10°E-70°E) and the Baikal-Okhotsk (110°E-180°) sectors. When beyond two weeks, there are nearly little skills. The forecast skill of sector-blocking episodes is slightly lower than that of sector blocking in both sectors, and it is slightly higher in the Ural mountains sector than that in the Baikal-Okhotsk sector sector. Compared to block onset, the skill for block decay is slightly lower in the Ural mountains sector, and for both sectors, forecast skills of the block onset and the block decay tend to near zero when forecast lead time beyond 7 days. In both two sectors, a local dipole pattern at 500 hPa geopotential height associated with blocking and associated wave-train like patterns which are far away from the blocking sector can also well represented in CFSv2. The CFSv2 well reproduces the observed characteristics of local temperature and precipitation anomalies associated with the blocking over both sectors. Additionally, the CFSv2 also well reproduces the observed above normal precipitations over southern China when both sectors occur blocking, particularly in the Baikal-Okhotsk sector.
Key words: Blocking    Northern Hemisphere    summertime    CFSv2    forecast skill
收稿日期: 2017-01-26 出版日期: 2018-04-28
ZTFLH:  P456.7  
基金资助: 国家自然科学基金项目(41575090,41520104008,91637208);国家科技支撑计划项目(2015BAC03B04)
通讯作者: 贾小龙,E-mail:jiaxl@cma.gov.cn     E-mail: jiaxl@cma.gov.cn
作者简介: 周宁芳(1975),女,陕西渭南人,高级工程师,主要从事中期-延伸期预报研究.E-mail:zhounf@cma.gov.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周宁芳
贾小龙

引用本文:

周宁芳, 贾小龙. NCEP CFSv2对北半球夏季中高纬阻塞高压的预测检验[J]. 高原气象, 2018, 37(2): 469-480.

ZHOU Ningfang, JIA Xiaolong. Check Analysis of the Prediction of Northern Hemisphere Blocking in Summer by NCEP CFSv2. PLATEAU METEOROLOGY, 2018, 37(2): 469-480.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00036        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/469

Berggren R, Bolin B, Rossby C G, 1949. An aerological study of zonal motion, its perturbations and break-down[J]. Tellus, 2:14-37.
Buehler T, Raible C C, Stocker T F, 2011. The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40[J]. Tellus A, 63:212-222.
Colucci S J, Baumhefner D P, 1998. Numerical prediction of the onset of blocking:A case study with forecast ensembles[J]. Mon Wea Rev, 126:773-784.
Dole R, Hoerling M, Perlwitz J, et al, 2011. Was there a basis for anticipating the 2010 Russian heat wave?[J]. Geophys Res Lett, 38(6):L06702. DOI:10.1029/2010GL046582.
He J H, Zhou X M, 1995. Numerical study of Ural blocking high's effect upon Asia summer monsoon circulation and East China flood and drought[J]. Adv Atmos Sci, 12(3):361-370.
Jia X L, Yang S, Song W L, et al, 2014. Prediction of wintertime northern Hemisphere blocking by the NCEP Climate Forecast System[J]. J Meteor Res, 28(1):76-90.
Masato G, Hoskins B J, Woollings T J, 2012. Wave-breaking characteristics of midlatitude blocking[J]. Quart J Roy Meteor Soc, 138(666):1285-1296.
Matsueda M, Mizuta R, Kusunoki S, 2009. Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model[J]. J Geophys Res, 114(D12):D12114. DOI:10.1029/2009JD011919.
Pelly J L, Hoskins B J, 2003. How well does the ECMWF ensemble prediction system predict blocking?[J]. Quart J Roy Meteor Soc, 129:1683-1702.
Rex D F, 1950. Blocking action in the middle troposphere and its effects upon regional climate. ii. The climatology of blocking action[J]. Tellus, 2:275-301.
Saha S, Moorthi S, Xingren W, et al, 2014. The NCEP Climate Forecast System version 2[J]. J Climate, 27(6):2185-2208.
Saha S, Naliga S, Thiaw C, et al, 2010. The NCEP climate forecast system reanalysis[J]. Bull Amer Meteor Soc, 91:1015-1057.
Tibaldi S, Molteni F, 1990. On the operational predictability of blocking[J]. Tellus, 42:343-365.
Tibaldi S, Ruti P, Tosi E, et al, 1995. Operational predictability of winter blocking at ECMWF:an update[C]//Annales Geophysicae. Springer-Verlag, 13(3):305-317.
Waliser D, Weickmann K, Dole R, et al, 2006. The experimental MJO prediction project[J]. Bull Amer Meteor Soc, 87(4):425-431.
Wang Y, 1992. Effects of blocking anticyclones in Eurasia in the rainy season (Meiyu/Baiu season)[J]. J Meteor Soc Japan. Ser. Ⅱ, 70(5):929-951.
Watson J C, Stephen J C, 2002. Evaluation of ensemble predictions of blocking in the NCEP global spectral model[J]. Mon Wea Rev, 130:3008-3021.
Xie P, Janowiak J E, Arkin P A, et al, 2003. GPCP pentad precipitation analyses:An experimental dataset based on gauge observation sand satellite estimates[J]. J Climate, 16:2197-2214.
毕慕莹, 丁一汇, 1992.1980年夏季华北千旱时期东亚阻塞形势的位涡分析[J]. 应用气象学报, 3(2):145-156. Bi M Y, Ding Y H, 1992. A study of budget of potential vorticity of blocking high during the drought period in summer of 1980[J]. J Appl Meteor, 3(2):145-156.
陈菊英, 王玉红, 王文, 2001.1998及1999年乌山阻高突变对长江中下游大暴雨过程的影响[J]. 高原气象, 20(4):388-394. Chen J Y, Wang Y H, Wang W, 2001. The influence of sudden change of Ural Blocking High on heavy rainstorm processes in the middle-lower reaches of Yangtze River in June-July of 1998 and 1999[J]. Plateau Meteor, 20(4):388-394.
高辉, 陈丽娟, 贾小龙, 等, 2008.2008 年1月我国大范围低温雨雪冰冻灾害分析Ⅱ, 成因分析[J].气象, 34(4):101-106.Gao H, Chen L J, Jia X L, et al, 2008. Analysis of the severe cold surge, ice-snow and frozen disasters in south China during January 2008:Ⅱ. Possible climatic causes[J]. Meteor Mon, 34(4):101-106.
丁一汇, 王遵娅, 宋亚芳, 等, 2008. 中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系[J]. 气象学报, 66(5):808-825. Ding Y H, Wang Z Y, Song Y F, et al, 2008. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming[J]. Acta Meteor Sinica, 66(5):808-825.
李崇银, 杨辉, 顾薇, 2008. 中国南方雨雪冰冻异常天气原因分析[J].气候与环境研究, 13(2):113-122. Li C Y, Yang H, Gu W, 2008. Cause of severe weather with cold air, freezing rain and snow over south China in January 2008[J]. Climatic Environ Res, 13(2):113-122.
李峰, 丁一汇, 鲍媛媛, 2008.2003年淮河大水期间亚洲北部阻塞高压的形成特征[J]. 大气科学, 32(3):469-480. Li F, Ding Y H, Bao Y Y, 2008. A study of the forming characteristics of blocking high in northern Asia during the flood period of the Huaihe river basin in 2003[J]. Chinese J Atmos Sci, 32(3):469-480.
李威, 王启祎, 王小玲, 2007. 北半球阻塞高压实时监测诊断业务系统[J]. 气象, 33(4):77-81. Li W, Wang Q Y, Wang X L, 2007. The real-time operational system of monitoring and diagnostics on the northern hemisphere blocking high[J]. Meteor Mon, 33(4):77-81.
李维京, 1999.1998年大气环流异常及其对中国气候的影响[J]. 气象, 25(4):20-25. Li W J, 1999. General atmospheric circulation anomaly in 1998 and their impact on climate anomaly in China[J]. Meteor Mon, 25(4):20-25.
李艳, 金荣华, 王式功, 2010.1950-2008年影响中国天气的关键区阻塞高压统计特征[J]. 兰州大学学报, 46(6):47-55. Li Y, Jin R H, Wang S G, 2010. Statistical characteristics of blocking highs influencing the weather in China during 1950-2008[J]. Journal of Lanzhou University (Nature Sciences), 46(6):47-55.
李艳, 王式功, 金荣花, 等, 2012. 我国南方低温雨雪冰冻灾害期间阻塞高压异常特征分析[J].高原气象, 31(1):94-101. Li Y, Wang S G, Jin R H, et al, 2012. Abnormal characteristics of blocking high during durative low temperature, snowfall and freezing weather in southern China[J]. Plateau Meteor, 31(1):94-101.
贾小龙, 王谦谦, 2006. 东北地区汛期降水异常的大气环流特征分析[J]. 高原气象, 25(2):309-318. Jia X L, Wang Q Q, 2006. Analyses on general circulation character of precipitation anomaly in northeast China flood season[J]. Plateau Meteor, 25(2):309-318.
贾小龙, 陈丽娟, 龚振淞, 等, 2011.2010年海洋和大气环流异常及对中国气候的影响[J]. 气象, 37(4):446-453. Jia X L, Chen L J, Gong Z S, et al, 2011. Anomalies of ocean and atmospheric circulation in 2010 and their impacts on climate in China[J]. Meteor Mon, 37(4):446-453.
王前, 赵勇, 陈飞, 等, 2017. 南亚高压的多模态特征及其与新疆夏季降水的联系[J]. 高原气象, 36(5):1209-1220. Wang Q, Zhao Y, Chen F, et al, 2017. Characteristics of different patterns of South Asia High and their relationships with summer precipitation in Xinjiang[J]. Plateau Meteor, 36(5):1209-1220. DOI:10.7522/j. issn. 1000-0534.2016.00123.
康志明, 金荣华, 鲍媛媛, 2010.1951-2006年期间我国寒潮活动特征分析[J]. 高原气象, 29(2):420-428. Kang Z M, Jin R H, Bao Y Y, 2010. Characteristic analysis of cold wave in China during the period of 1951-2006[J]. Plateau Meteor, 29(2):420-428.
孙建华, 赵思雄, 2003.1998年夏季长江流域梅雨期环流演变的特殊性探讨[J]. 气候与环境研究, 8(3):291-306. Sun J H, Zhao S X, 2003. A study of special circulation during Meiyu season of the Yangtze river basin in 1998[J]. Climatic Environ Res, 8(3):291-306.
苏丽欣, 廉毅, 李尚锋, 等, 2016. 东北区夏季低温事件概率空间分布与亚洲阻塞流型域及其冷空气活动路径[J]. 地理科学, 35(2):251-258. Su L X, Lian Y, Li S F, et al, 2016. Distribution of summer cool events over northeast China and the Asian blocking regime and cold air path[J]. Sci Geo Sinica, 35(2):251-258.
陶诗言, 卫捷, 2008.2008 年1月我国南方严重冰雪灾害过程分析. 气候与环境研究, 13(4):337-350.Tao S Y, Wei J, 2008. Severe snow and freezing-rain in January 2008 in the southern China[J]. Climatic Environ Res, 13(4):337-350.
陶诗言, 赵煜佳, 陈晓敏, 1958. 东亚的梅雨期与亚洲上空大气环流季节变化的关系[J]. 气象学报, 29(2):119-134. Tao S Y, Zhao Y J, Chen X M, 1958. The relationship between May-Y in far east and the behavior of circulation over Asia[J]. Acta Meteor Sinica, 29(2):119-134.
王东海, 柳崇健, 刘英, 等, 2008.2008年1月中国南方低温雨雪冰冻天气特征及其天气动力学成因的初步分析[J].气象学报, 66(3):405-422. Wang D H, Liu C J, Liu Y, et al, 2008. A preliminary analysis of features and causes of the snow storm event over the Southern China in January 2008[J]. Acta Meteor Sinica, 66(3):405-422.
吴国雄, 刘辉, 陈飞, 等, 1994. 时变涡动输送和阻塞高压的形成:1980年夏季我国的南涝北旱[J]. 气象学报, 52(3):308-320. Wu G X, Liu H, Chen F, et al, 1994. Transient eddy transfer and formation of blocking high-on the persistently abnormal weather in the summer of 1980[J]. Acta Meteor Sinica, 52(3):308-320.
王小玲, 丁一汇, 2013.2010年夏季欧亚异常阻高演变过程及对天气气候的影响[J]. 气象, 39(9):1089-1095. Wang X L, Ding Y H, 2013. Evolution of the exceptional blocking high over Eurasia and its impact on weather and climate in 2010 summer[J]. Meteor Mon, 39(9):1089-1095.
王毅, 金荣花, 代刊, 等, 2014.2008年1月欧亚阻塞形势的ECMWF 集合预报效果评估检验[J].大气科学学报, 37(3):257-267. Wang Y, Jin R H, Dai K, et al, 2014. The assessment and verification of ECMWF ensemble forecasting on the Eurasia atmospheric blocking in January 2008[J]. Tran Atmos Sci, 37(3):257-267.
肖贻青, 2017. 乌拉尔山阻塞与北大西洋涛动的关系及其对中国冬季天气的影响[J]. 高原气象, 36(6):1499-1511. Xiao Y Q, 2017. Relationship between Ural Blocking and the North Atlantic Oscillation and their influence on winter weather over China[J]. Plateau Meteor, 36(6):1499-1511. DOI:10.7522/j. issn. 1000-0534.2016.00109.
叶笃正, 陶诗言, 朱抱真, 等, 1962. 北半球冬季阻塞形势的研究[M]. 北京:科学出版社, 1-10. Ye D Z, Tao S Y, Zhu B Z, et al, 1962. Studies on the blocking situation in the northern heminphere[M]. Beijing:China Meteorological Press, 1-10.
张英华, 李艳, 李德帅, 等, 2016. 中国东部夏季极端高温的空间分布特征及其环流型[J]. 高原气象, 35(2):469 483. Zhang Y H, Li Y, Li D S, et al, 2016. Study on the space distribution and circulation pattern of extreme high temperature over eastern China in summer[J]. Plateau Meteor, 35(2):469 483. DOI:10.7522/j. issn. 1000-0534.2014.00159.
张庆云, 陶诗言, 1998. 亚洲中高纬度环流对东亚夏季降水的影响[J]. 气象学报, 56(2):199-211. Zhang Q Y, Tao S Y, 1998. Influence of Asian mid high latitude circulation on east Asian summer rainfall[J]. Acta Meteor Sinica, 56(2):199-211.
张庆云, 陶诗言, 彭京备, 2008. 我国灾害性天气气候事件成因机理的研究进展[J]. 大气科学, 32(4):815-825. Zhang Q Y, Tao S Y, Peng J B, 2008. The studies of meteorological disasters over China[J]. Chinese J Atmos Sci, 32(4):815-825.
张庆云, 郭恒, 2014. 夏季长江淮河流域异常降水事件环流差异及机理研究[J]. 大气科学, 38(4):656-669. Zhang Q Y, Guo H, 2014. Circulation differences in anomalous rainfall over the Yangtze river and Huaihe river valleys in summer[J]. Chinese J Atmos Sci, 38 (4):656-669.
周晓平, 1957. 亚洲中纬度区域阻塞形势的统计分析[J]. 气象学报, 28(1):75-85. Zhou X P, 1957. Statistical investigation on the blocking situations over Asia[J]. Acta Meteor Sinica, 28(1):75-85.
[1] 罗雄, 李国平. 一次高原切变线过程的数值模拟与阶段性结构特征[J]. 高原气象, 2018, 37(2): 406-419.
[2] 马申佳, 陈超辉, 何宏让, 李湘, 李毅. 基于BGM的对流尺度集合预报试验及其检验[J]. 高原气象, 2018, 37(2): 495-504.
[3] 康延臻, 靳双龙, 彭新东, 杨旭, 尚可政, 王式功. 单双参云微物理方案对华北“7·20”特大暴雨数值模拟对比分析[J]. 高原气象, 2018, 37(2): 481-494.
[4] 王瑞文, 龚建东, 韩威, 张林. AMDAR温度资料的偏差订正及对GRAPES系统的影响[J]. 高原气象, 2017, 36(5): 1346-1356.
[5] 薛童, 管兆勇, 徐建军, 邵旻. ATMS和CrIS卫星资料同化对青藏高原天气预报的影响[J]. 高原气象, 2017, 36(4): 912-929.
[6] 张俊兰, 彭军. 北疆春季降水相态转换判识和成因分析[J]. 高原气象, 2017, 36(4): 939-949.
[7] 摆玉龙, 张转花, 尤元红, 刘颖娟. 一种基于鲁棒集合滤波的资料同化方法[J]. 高原气象, 2017, 36(4): 1052-1059.
[8] 庄潇然, 闵锦忠, 武天杰, 邓旭, 蔡沅辰. 风暴尺度集合预报中不同初始扰动的多尺度发展特征研究[J]. 高原气象, 2017, 36(3): 811-825.
[9] 申红艳, 陈丽娟, 胡泊, 乔少博, 张调风. 西北中部夏季降水主要空间型及环流特征[J]. 高原气象, 2017, 36(2): 455-467.
[10] 蔡沅辰, 闵锦忠, 庄潇然. 不同随机物理扰动方案在一次暴雨集合预报中的对比研究[J]. 高原气象, 2017, 36(2): 407-423.
[11] 潘留杰, 张宏芳, 陈小婷, 屈丽玮, 袁媛. ECMWF集合预报在中国中部地区的降水概率预报性能评估[J]. 高原气象, 2017, 36(1): 138-147.
[12] 孙悦, 吴统文, 金霞, 李肇新. CMIP5气候模式对东亚地区对流和层云降水量和降水发生频率的模拟评估[J]. 高原气象, 2016, 35(6): 1524-1539.
[13] 孟纯纯, 马耀明, 马伟强, 勾鹏, 白杨. 中国东部秋冬季极端干旱事件的数值模拟研究[J]. 高原气象, 2016, 35(5): 1327-1338.
[14] 马占山, 刘奇俊, 秦琰琰. GRAPES_GFS不同湿物理过程对云降水预报性能的诊断与评估[J]. 高原气象, 2016, 35(4): 989-1003.
[15] 杨显玉, 文军, 王大勇, 李江林. 一次甘肃强降水过程的数值模拟与诊断分析[J]. 高原气象, 2016, 35(3): 726-733.