Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 481-494    DOI: 10.7522/j.issn.1000-0534.2017.00026
论文     
单双参云微物理方案对华北“7·20”特大暴雨数值模拟对比分析
康延臻1, 靳双龙2, 彭新东3,4, 杨旭1, 尚可政1, 王式功1,3
1. 兰州大学大气科学学院/甘肃省干旱气候变化与减灾重点实验室, 甘肃 兰州 730002;
2. 中国电力科学研究院新能源与储能运行控制国家重点实验室, 北京 100192;
3. 成都信息工程大学大气科学学院, 四川 成都 610225;
4. 中国气象科学研究院灾害天气国家重点实验室, 北京 100081
Comparative Analysis of Single-Moment and Double-Moment Microphysics Schemes in WRF on the Torrential Rainfall Event in North China During 1921 July, 2016
KANG Yanzhen1, JIN Shuanglong2, PENG Xindong3,4, YANG Xu1, SHANG Kezheng1, WANG Shigong1,3
1. College of Atmospheric Sciences, Lanzhou University/Key Laboratory of Arid Climate Change and Reducing Disaster of Gansu Province, Lanzhou 730020, Gansu, China;
2. State Key Laboratory of Operation and Control of Renewable Energy and Storage Systems, China Electric Power Research Institute, Beijing 100192, China;
3. College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;
4. State Key Laboratory Of Severe Weather(LaSW), Chinese Academy of Meteorological Sciences, Beijing 100081, China
 全文: PDF(17380 KB)  
摘要: 在2016年7月19-21日华北特大暴雨过程初步分析的基础上,采用中尺度数值模式WRF3.6.1中16种微物理参数化方案对该过程进行了数值模拟,并分为单参和双参两组对结果进行评估分析。结果表明,该过程为伴随低涡发展的强对流降水,持续时间长、范围广、总量大。大部分微物理方案对降水的分布模拟效果较好,能够再现此次特大暴雨过程;随模拟时间延长,方案间的差别变大,且单参方案对各量级降水的模拟差别比双参方案显著,方案间雨水混合比、固态水凝物以及垂直速度的差别均大于双参方案,整体效果不如双参方案。综合来看,SBU_YLin方案对于此次特大暴雨过程模拟效果最好,对降水量级和落区的模拟都接近实况。
关键词: 云微物理过程单、双参数特大暴雨对比分析    
Abstract: Based on a general analysis, the torrential rainfall event in north China during 19-21 July 2016 is simulated by using the Weather Research Forecast modeling system. The effects of microphysics schemes, divided into two groups of nine single and seven double-moment schemes on rainfall area and intensity of precipitation were evaluated. The results show that the heavy rainfall event with low vortex characterized by high intensity, long duration and large amount. Simulation of most schemes present a rather good reproduction of rainfall. As time goes on, differenc-es between schemes are more obvious. The results of the double-moment schemes presented less simulation effect, compared to the results of the single-moment schemes in terms of rain mixing ratio, solid hydrometeor and vertical velocity. The double-moment schemes was much better than its contrary one. Overall, it was the SBU_YLin that provided the most successful simulation scheme on the torrential, and the simulation of rainfall area and intensity of the rainfall was close to the observations.
Key words: Microphysical schemes    single-moment    double-moment schemes    torrential rainfall    evaluate
收稿日期: 2016-11-27 出版日期: 2018-04-28
ZTFLH:  P456.7  
基金资助: 国家自然科学基金重大研究计划重点支持项目(91644226);国家电网公司科技项目资助(1704-00206);国家基础科技条件平台建设项目(NCMI-SBS17-201707,NCMI-SJS15-201707)
作者简介: 康延臻(1992),男,山东-城人,博士研究生,主要从事现代天气预报技术研究.E-mail:kangyz10@lzu.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
康延臻
靳双龙
彭新东
杨旭
尚可政
王式功

引用本文:

康延臻, 靳双龙, 彭新东, 杨旭, 尚可政, 王式功. 单双参云微物理方案对华北“7·20”特大暴雨数值模拟对比分析[J]. 高原气象, 2018, 37(2): 481-494.

KANG Yanzhen, JIN Shuanglong, PENG Xindong, YANG Xu, SHANG Kezheng, WANG Shigong. Comparative Analysis of Single-Moment and Double-Moment Microphysics Schemes in WRF on the Torrential Rainfall Event in North China During 1921 July, 2016. PLATEAU METEOROLOGY, 2018, 37(2): 481-494.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00026        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/481

Chen S H, Sun W Y, 2002. A one-dimensional time dependent cloud model[J]. J Meteor Soc Japan, 80(1):99-118.
Colle B A, Garvert M F, Wolfe J B, et al, 2005. The 1314 December 2001 IMPROVE-2 Event. part iii:simulated microphysical budgets and sensitivity studies[J]. J Atmos Sci, 62(10):3535-3558.
Etherton B, Santos P, 2008. Sensitivity of WRF forecasts for South Florida to initial conditions[J]. Wea Forecasting, 23(4):725-740.
Hong S Y, Dudhia J, Chen S H, 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon Wea Rev, 132(1):103-120.
Houghton J T, Ding Y, Griggs D J, et al, 2001. Climate change 2001:The Scientific Basis[M]. Cambridge, United Kingdom and New York:Cambridge University Press.
Lin Y, Colle B A, 2011. A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics[J]. Mon Wea Rev, 139(3):1013-1035.
Morrison H, Thompson G, Tatarskii V, 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line:comparison of one-and two-moment schemes[J]. Mon Wea Rev, 137(3):991-1007.
Pielke R A, 2013. Mesoscale meteorological modeling[M]. New York:Academic Press.
Zhang D L, Fritsch J M, 1986. A case study of the sensitivity of numerical simulation of mesoscale convective systems to varying initial conditions[J]. Mon Wea Rev, 114(12):2418-2431.
丁一汇, 2014. 陶诗言先生在中国暴雨发生条件和机制研究中的贡献[J]. 大气科学, 38(4):616-626. Ding Y H, 2014. Contributions of Prof. Shiyan Tao to the study of formation conditions and mechanisms of heavy rainfall in China[J]. Chinese J Atmos Sci, 38(4):616-626.
范水勇, 郭永润, 陈敏, 等, 2008. 高分辨率WRF三维变分同化在北京地区降水预报中的应用[J]. 高原气象, 27(6):1181-1188. Fan S Y, Guo Y R, Chen M, et al, 2008. Application of WRF 3DVar to a high resolution model over Beijing area[J]. Plateau Meteor, 27(6):1181-1188.
何由, 阳坤, 姚檀栋, 等, 2012. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象, 31(5):1183-1191. He Y, Yang K, Yao T D, et al, 2012. Numerical simulation of a heavy precipitation in Qinghai-Xizang Plateau based on WRF model[J]. Plateau Meteor, 31(5):1183-1191.
李泽椿, 毕宝贵, 金荣花, 等, 2014. 近10年中国现代天气预报的发展与应用[J]. 气象学报, 72(6):1069-1078. Li Z C, Bi B G, Jin R H, et al, 2014. The development and application of the modern weather forecast in China for the recent 10 years[J]. Acta Meteor Sinica, 72(6):1069-1078.
林文实, 李江南, 樊琦, 等, 2007. 云微物理参数化对华北降雪影响的数值模拟[J]. 高原气象, 26(1):107-115. Lin W S, Li J N, Fan Q, et al, 2007. Numerical simulation of impact of the microphysical parameterization on snowfall over North China[J]. Plateau Meteor, 26(1):107-115.
娄珊珊, 陈光舟, 邱学兴, 2015. 不同参数化方案对安徽一次暴雨过程模拟的影响分析[J]. 气象科学, 35(3):370-378. Lou S S, Chen G Z, Qiu X X, 2015. Impact of various parameterization schemes in WRF model on numerical simulation of a heavy rainfall in Anhui[J]. J Meteor Sci, 35(3):370-378.
楼小凤, 胡志晋, 王鹏云, 等, 2003. 中尺度模式云降水物理方案介绍[J]. 应用气象学报, 14(supp1):49-59. Lou X F, Hu Z J, Wang P Y, et al, 2003. Introduction to microphysical schemes of mesoscale atmospheric models and cloud models[J]. J Appl Meteor Sci, 14(supp1):49-59.
马严枝, 陆昌根, 高守亭, 2012.8. 19华北暴雨模拟中微物理方案的对比试验[J]. 大气科学, 36(4):835-850. Ma Y Z, Lu C G, Gao S T, 2012. The effects of different microphysical schemes in wrf on a heavy rainfall in North China during 1819 August 2010[J]. Chinese J Atmos Sci, 36(4):835-850.
孙晶, 楼小凤, 史月琴, 2011. 不同微物理方案对一次梅雨锋暴雨过程模拟的影响[J]. 气象学报, 69(5):799-809. Sun J, Lou X F, Shi Y Q, 2011. The effects of different microphysical schemes on the simulation of a meiyu front heavy rainfall[J]. Acta Meteor Sinica, 69(5):799-809.
陶诗言, 1980. 中国之暴雨[M]. 北京:科学出版社, 115-121. Tao S Y, 1980. Heavy rainfalls in China[M]. Beijing:Science Press, 115-121.
王洪, 尹金方, 王东海, 2014. 单双参云微物理方案对华南暴雨的模拟对比分析[J]. 高原气象, 33(5):1341-1351. Wang H, Yin J F, Wang D H, 2014. Comparative analysis of single-moment and double-moment microphysics schemes on a local heavy rainfall in South China[J]. Plateau Meteor, 33(5):1341-1351. DOI:10.7522/j. issn. 1000-0534.2013.00119.
徐国强, 梁旭东, 余晖, 等, 2007. 不同云降水方案对一次登陆台风的降水模拟[J]. 高原气象, 26(5):891-900. Xu G Q, Liang X D, Yu H, et al, 2007. Precipitation simulation using different cloud-precipitation schemes for a landfall typhoon[J]. Plateau Meteor, 26(5):891-900.
闫之辉, 邓莲堂, 2007. WRF模式中的微物理过程及其预报对比试验[J]. 沙漠与绿洲气象, 1(6):1-6. Yan Z H, Deng L T, 2007. Description of microphysical processes in WRF model and its prediction experiment[J]. Desert and Oasis Meteor, 1(6):1-6.
尹金方, 王东海, 翟国庆, 2014. 区域中尺度模式云微物理参数化方案特征及其在中国的适用性[J]. 地球科学进展, 29(2):238-249. Yin J F, Wang D H, Zhai G Q, 2014. A study of characteristics of the cloud microphysical parameterization schemes in mesoscale models and its applicability to China[J]. Adv Earth Sci, 29(2):238-249.
曾明剑, 王桂臣, 吴海英, 等, 2015. 基于中尺度数值模式的分类强对流天气预报方法研究[J]. 气象学报, 73(5):868-882. Zeng M J, Wang G C, Wu H Y, et al, 2015. Study of the forecasting method for the classified severe convection weather based on a meso-scale numerical model[J]. Acta Meteor Sinica, 73(5):868-882.
张大林, 1998. 各种非绝热物理过程在中尺度模式中的作用[J]. 大气科学, (4):548-561. Zhang D L, 1998. Roles of various diabatic physical processes in mesoscale models[J]. Chinese J Atmos Sci, (4):548-561.
赵思雄, 孙建华, 2013. 近年来灾害天气机理和预测研究的进展[J]. 大气科学, 37(2):297-312. Zhao S X, Sun J H, 2013. Study on mechanism and prediction of disastrous weathers during recent years[J]. Chinese J Atmos Sci, 37(2):297-312.
赵震, 雷恒池, 吴玉霞, 2005. MM5中新显式云物理方案的建立和数值模拟[J]. 大气科学, 29(4):609-619. Zhao Z, Lei H C, Wu Y X, 2005. A new explicit microphysical scheme in MM5 and numerical simulation[J]. Chinese J Atmos Sci, 29(4):609-619.
朱格利, 林万涛, 曹艳华, 2014. 用WRF模式中不同云微物理参数化方案对华南一次暴雨过程的数值模拟和性能分析[J]. 大气科学, 38(3):513-523. Zhu G L, Lin W T, Cao Y H, 2014. Numerical simulation of a rainstorm event over south china by using various cloud microphysics parameterization schemes in WRF model and its performance analysis[J]. Chinese J Atmos Sci, 38(3):513-523.
[1] 罗雄, 李国平. 一次高原切变线过程的数值模拟与阶段性结构特征[J]. 高原气象, 2018, 37(2): 406-419.
[2] 马申佳, 陈超辉, 何宏让, 李湘, 李毅. 基于BGM的对流尺度集合预报试验及其检验[J]. 高原气象, 2018, 37(2): 495-504.
[3] 周宁芳, 贾小龙. NCEP CFSv2对北半球夏季中高纬阻塞高压的预测检验[J]. 高原气象, 2018, 37(2): 469-480.
[4] 王瑞文, 龚建东, 韩威, 张林. AMDAR温度资料的偏差订正及对GRAPES系统的影响[J]. 高原气象, 2017, 36(5): 1346-1356.
[5] 薛童, 管兆勇, 徐建军, 邵旻. ATMS和CrIS卫星资料同化对青藏高原天气预报的影响[J]. 高原气象, 2017, 36(4): 912-929.
[6] 张俊兰, 彭军. 北疆春季降水相态转换判识和成因分析[J]. 高原气象, 2017, 36(4): 939-949.
[7] 摆玉龙, 张转花, 尤元红, 刘颖娟. 一种基于鲁棒集合滤波的资料同化方法[J]. 高原气象, 2017, 36(4): 1052-1059.
[8] 庄潇然, 闵锦忠, 武天杰, 邓旭, 蔡沅辰. 风暴尺度集合预报中不同初始扰动的多尺度发展特征研究[J]. 高原气象, 2017, 36(3): 811-825.
[9] 申红艳, 陈丽娟, 胡泊, 乔少博, 张调风. 西北中部夏季降水主要空间型及环流特征[J]. 高原气象, 2017, 36(2): 455-467.
[10] 蔡沅辰, 闵锦忠, 庄潇然. 不同随机物理扰动方案在一次暴雨集合预报中的对比研究[J]. 高原气象, 2017, 36(2): 407-423.
[11] 潘留杰, 张宏芳, 陈小婷, 屈丽玮, 袁媛. ECMWF集合预报在中国中部地区的降水概率预报性能评估[J]. 高原气象, 2017, 36(1): 138-147.
[12] 孙悦, 吴统文, 金霞, 李肇新. CMIP5气候模式对东亚地区对流和层云降水量和降水发生频率的模拟评估[J]. 高原气象, 2016, 35(6): 1524-1539.
[13] 孟纯纯, 马耀明, 马伟强, 勾鹏, 白杨. 中国东部秋冬季极端干旱事件的数值模拟研究[J]. 高原气象, 2016, 35(5): 1327-1338.
[14] 马占山, 刘奇俊, 秦琰琰. GRAPES_GFS不同湿物理过程对云降水预报性能的诊断与评估[J]. 高原气象, 2016, 35(4): 989-1003.
[15] 杨显玉, 文军, 王大勇, 李江林. 一次甘肃强降水过程的数值模拟与诊断分析[J]. 高原气象, 2016, 35(3): 726-733.