Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 553-559    DOI: 10.7522/j.issn.1000-0534.2017.00071
论文     
中国结冰现象序列的建立及气候变化分析
余予1, 任芝花1, 孟晓艳2
1. 国家气象信息中心, 北京 100081;
2. 中国环境监测总站, 北京 100012
Construction and Climate Variation Analysis of Icing Weather Phenomenon Series over China
YU Yu1, REN Zhihua1, MENG Xiaoyan2
1. National Meteorological Information Centre, Beijing 100081, China;
2. China National Environmental Monitoring Centre, Beijing 100012, China
 全文: PDF(7104 KB)  
摘要: 基于全国2 400余个国家级地面站1954-2015年观测的天气现象提取得到结冰现象序列,进行了气象要素内部一致性检查,特别是对中国1981年前部分台站由于简化观测任务不记录结冰现象,和部分台站漏记该现象的情况进行了检测和质控。结果表明,1954-1979年间共有662个台站累计6 328年实际未观测和记录结冰现象,1981年前有839个台站累计1 453年存在明显漏记结冰现象情况。基于质控后数据统计表明,1961-2015年全国年结冰日数呈减少趋势,约为-1.5 d·(10a)-1。基于我国35°N以北708个地面台站,统计了1971-2015年结冰期变化。北方平均结冰期为149天,且呈现下降趋势,约为-2.1 d·(10a)-1。288站结冰期显著减少,且155个台站的结冰起始日期推迟,141个台站的结冰终止日期提前。
关键词: 结冰现象长时间序列气候变化分析    
Abstract: Long term series of icing weather phenomenon during 1954-2015 were extracted from the ground observations covering more than 2 400 national level surface stations over China. Then several quality control procedures were carried out, such as meteorological elements inherent consistency check and statistical check by using 30-year climate normal. Especially, we paid much attention on the following two situations when checked the time series. The first one was that a part of national stations under the historical guidance for simplifying observation did not measured and recorded the icing weather phenomenon before the year of 1981, and the other one was that the annual icing days from hundreds of stations in several years before 1981 were less than their normal values with remarkable differences. The results showed that, 662 stations actually did not take the mission of icing weather observation in the whole of 6 328 years during 1954-1979, which were mainly distributed in Hebei, Jiangsu, Jiangxi, Henan, Hubei, Hunan and Shaanxi provinces. Before 1981 there were also other 1 453 years from 839 stations obtaining much less icing weather records when compared to the normal of 1981-2000. Based on the raw data and the quality controlled data, we calculated the national mean values of annual icing days during 1961-2015. It illustrated that the raw data had an upward trend with about 2.0 days for every decade while the quality controlled data showed a declined trend of -1.5 days per decade. The national mean annual days of daily minimum air temperature lower than -1℃ had a high correlation (0.92) with the quality controlled national icing day series, which indicated the decline trend of icing days was acceptable. The annual mean icing day of the stations to the south of Latitude 25°N and of the stations in Sichuan Basin were almost less than 10 while it was greater than 200 in the northwest of Heilongjiang, northeast of Inner Mongolia, and Qinghai-Tibetan Plateau. We also analyzed the variations of the icing duration over Northern China from 1971 to 2015 by choosing 708 stations which were all located to the north of Latitude 35°N with consecutive observations. The average value of annual icing duration of Northern China was about 149 days with a downward trend of -2.1 days per 10 years. The icing duration of 288 north stations significantly reduced in the past 45 years, and the starting dates of icing duration from 155 stations were delayed, while the ending dates of 144 stations were brought forward.
Key words: Icing weather phenomenon    long term series    climate variation analysis
收稿日期: 2017-07-27 出版日期: 2018-04-28
ZTFLH:  P413  
基金资助: 预报预测核心业务发展专项(CMAHX20160703);公益性行业(气象)科研专项(GYHY201106038)
通讯作者: 孟晓艳,E-mail:mengxy@cnemc.cn     E-mail: mengxy@cnemc.cn
作者简介: 余予(1981),男,江苏镇江人,高级工程师,主要从事气象资料分析与评估研究.E-mail:yuyu@cma.gov.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
余予
任芝花
孟晓艳

引用本文:

余予, 任芝花, 孟晓艳. 中国结冰现象序列的建立及气候变化分析[J]. 高原气象, 2018, 37(2): 553-559.

YU Yu, REN Zhihua, MENG Xiaoyan. Construction and Climate Variation Analysis of Icing Weather Phenomenon Series over China. PLATEAU METEOROLOGY, 2018, 37(2): 553-559.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00071        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/553

Donat M G, Alexander L V, Yang H, 2013. Global land-based datasets for monitoring climatic extremes[J]. Bull Amer Meteor Soc, 94(7):997-1006.
Easterling D R, 2002. Recent changes in frost days and the frost-free season in the United States[J]. Bull Amer Meteor Soc, 83(9):1327 -1332.
Frich P, Alexander L V, Della-Marta P, et al, 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century[J]. Climate Res, 19:193-212.
Meehl G A, Tebaldi C, Nychka D, 2004. Changes in frost days in simulations of twenty first century climate[J]. Climate Dyn, 23(5):495-511.
Scheifinger H, Menzel A, Koch E, et al, 2002. Trends of spring time frost events and phenological dates in Central Europe[J]. Theor Appl Climatol, 74(1):141-151.
Wang Q, Fu C, 1992. The detection of climate abrupt change with madd-kendall rank statistics[J]. Acta Meteor Sin, 6(2):254-260.
康延臻, 王式功, 杨旭, 等, 2016. 高速公路交通气象监测预报服务研究进展[J]. 干旱气象, 34(4):591-603. Kang Y Z, Wang S G, Yang X, et al, 2016. Progress of traffic meteorological researches about monitoring and forecasting services on express highways[J]. J Arid Meteor, 34(4):591-603.
李丽, 简茂球, 2010. 粤西北霜冻天气的气候统计特征[J]. 广东气象, 32(6):1-4. Li L, Jian M Q, 2010. Climatic statistics on frost in northwestern Guangdong[J]. Guangdong Meteor, 32(6):1-4.
李迅, 尹志聪, 丁德平, 等, 2012. 北京地区高速公路道面结冰特征及气象条件[J]. 应用气象学报, 23(5):578-584. Li X, Yin Z C, Ding D P, et al, 2012. Meteorological conditions of road surface icing on Beijing expressway[J]. J Appl Meteor Sci, 23(5):578-584.
刘洪兰, 张强, 赵小强, 等, 2013. 张掖湿地公园水域结冰厚度预报的BP神经网络与统计回归方法对比[J]. 干旱气象, 31(2):425-431. Liu H L, Zhang Q, Zhao X Q, et al, 2013. Comparison analysis of BP neural network and statistical models for forecasting icing thickness of the Zhangye National Wetland Park[J]. J Arid Meteor, 31(2):425-431.
刘洪兰, 张俊国, 阙龙凯, 等, 2014. 基于BP神经网络的张掖国家湿地公园水域结冰厚度预报模型[J]. 高原气象, 33(3):832-837. Liu H L, Zhang J G, Que L K, et al, 2014. Forecasting model for ice thickness in Zhangye national wetland park based on BP neural network[J]. Plateau Meteor, 33(3):832-837. DOI:10.7522/j. issn. 1000-0534.2013.00051.
王岱, 游庆龙, 江志红, 等, 2016. 基于均一化资料的中国极端地面气温变化分析[J]. 高原气象, 35(5):1352-1363. Wang D, You Q L, Jiang Z H, et al, 2016. Analysis of extreme temperature changes in China based on the homogeneity-adjusted data[J]. Plateau Meteor, 35(5):1352-1363. DOI:10.7522/j. issn. 1000-0534.2016.00019.
王丹, 高红燕, 黄少妮, 等, 2016. 西-咸机场高速公路灾害天气特征[J]. 干旱气象, 34(4):731-737. Wang D, Gao H Y, Huang S N, et al, 2016. Characteristics of disastrous weather in airport expressway of Xi'an-Xianyang[J]. J Arid Meteor, 34 (4):731-737.
魏凤英, 2007. 现代气候统计诊断与预测技术[M]. 北京:气象出版社. Wei F Y, 2007. Statistical diagnosis and forecasting techniques of modern climate[M]. Beijing:China Meteorological Press.
余予, 孟晓艳, 张欣, 2013.1980-2011年北京城区能见度变化趋势及突变分析[J]. 环境科学研究, 26(2):129-136. Yu Y, Meng X Y, Zhang X, 2013. Trends and abruption analysis on the visibility in the urban area of Beijing city during 1980-2011[J]. Res Environ Sci, 26(2):129-136.
张志富, 希爽, 余予, 等, 2015.1961-2012年中国5类主要冰冻天气的气候及变化特征[J]. 冰川冻土, 37(6):1435-1442. Zhang Z F, Xi S, Yu Y, et al, 2015. Climatic characteristics and variations of the gelivation weathers in China during 1961-2012[J]. Journal of Glaciology and Geocryology, 37(6):1435-1442.
赵凯, 钟伟, 王加平, 等, 2011. 近24a哈尔滨机场跑道易结冰月气温统计分析[J]. 黑龙江气象, 28(4):5-8. Zhao K, Zhong W, Wang J P, et al, 2011. The temperature statistics analysis in the winter ice month of Haerbin Airport runway in recent 24 years[J]. Heilongjiang Meteor, 28(4):5-8.
中国气象局, 2003. 地面气象观测规范[S]. 北京:气象出版社. China Meteorological Administration, 2003. Guidance of surface meteorological observation[S]. Beijing:China Meteorological Press.
[1] 赵煜飞, 张强, 余予, 杨贵. 中国小时风速数据集研制及在青藏高原地区的应用[J]. 高原气象, 2017, 36(4): 930-938.
[2] 李京校, 郭凤霞, 扈海波, 李如箭, 钱慕晖, 肖稳安. 北京及其周边地区SAFIR和ADTD闪电定位资料对比分析[J]. 高原气象, 2017, 36(4): 1115-1126.
[3] 万晓敏 田伟红 何晓欢. 加密FY-2G云导风质量评估及其在GRAPES_RAFS系统中的应用分析[J]. 高原气象, 2017, 36(1): 0-0.
[4] 焦鹏程, 王振会, 楚志刚, 韩静, 张帅, 朱艺青. 基于傅里叶谱分析的天气雷达图像插值方法[J]. 高原气象, 2016, 35(6): 1683-1693.
[5] 谭剑波, 李爱农, 雷光斌. 青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J]. 高原气象, 2016, 35(4): 875-886.
[6] 吴翀, 刘黎平, 吴海涛. 多部X波段天气雷达测量偏差分布及组网拼图结果分析[J]. 高原气象, 2016, 35(3): 823-833.
[7] 闵文彬, 李跃清, 周纪. 青藏高原东侧MODIS地表温度产品验证[J]. 高原气象, 2015, 34(6): 1511-1516.
[8] 赵煜飞, 朱江. 近50年中国降水格点日值数据集精度及评估[J]. 高原气象, 2015, 34(1): 50-58.
[9] 叶冬, 申彦波, 杜江, 艾生, 程兴宏. 吐鲁番气象站周边典型建筑对日照时数的影响分析[J]. , 2014, 33(6): 1712-1721.
[10] 张涛, 苗春生, 王新. LAPS与STMAS地面气温融合效果对比试验[J]. 高原气象, 2014, 33(3): 743-752.
[11] 戴晓燕, 过仲阳, 吴健平, 黎薇, 林珲. 1998年夏季青藏高原上东移MCS环境场特征的聚类分析[J]. 高原气象, 2007, 26(4): 701-707.
[12] 曹晓钟, 王强. 神经网络在气象观测资料优化中的应用研究[J]. 高原气象, 2001, 21(1): 96-101.
[13] 宋超辉, 孙安健. 非均一性气温气候序列订正方法的研究[J]. 高原气象, 1995, 14(2): 215-220.