Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 568-576    DOI: 10.7522/j.issn.1000-0534.2017.00058
论文     
广西“4·20”暖区飑线的形成及结构
翟丽萍, 农孟松, 赖珍权, 祁丽燕, 刘日胜
广西壮族自治区气象台, 广西 南宁 530022
Formation and Structure of ‘4·20’ Warm Sector Squall Line in Guangxi Province
ZHAI Liping, NONG Mengsong, LAI Zhenquan, QI Liyan, LIU Risheng
Guangxi Zhuang Autonomous Region Meteorological Observatory, Nanning 530022, Guangxi, China
 全文: PDF(20137 KB)  
摘要: 为深入了解暖区飑线的形成机理,利用多种观测资料对2016年4月20日暖区飑线过程的环境条件、形成及飑线的结构进行深入分析。结果表明:(1)高空槽前滞留的冷温槽利于产生强的对流不稳定,飑线发生前期低层强烈暖湿平流对建立静力不稳定起主导作用;(2)探空显示广西南部的环境条件更有利于对流的强盛发展和组织化加强;(3)近地面冷池出流与低层环境风场相互作用是飑线发展和维持的主要机制,飑线朝着其前方1 h负变压中心发展。此次飑线是具有前导对流线和尾随层状云区的飑线系统,以离散性传播为主。
关键词: 低层暖平流变压变温飑线结构传播型风暴    
Abstract: A warm area squall line occurred in Guangxi province on 20 April 2016, bringing strong wind and heavy rainfall. For insight into the formation mechanism of the warm sector squall line, the environmental conditions, formation and structure of the squall line were further analyzed by using varieties of observation data. The results showed that the stranded cold temperature trough ahead of upper trough was beneficial to strongly convective instability. Meanwhile, the lower strong warm and moist air advection played a leading role in establishing static instability. The diagram of T-lnP indicated that the environmental conditions of the southern part of Guangxi were more conducive to the development and organizational reinforcement of convection than that of the northern part. In addition, the cold pool outflow interacting with lower environmental wind field was the main mechanism for the squall line to develop and maintain. The squall line moved and developed toward the one hour katallobaric center ahead. Moreover, the squall line was given priority to dispersive transmission, along with a guiding streamline and the trailing stratiform cloud area.
Key words: Lower warm advection    variable pressure and variable temperature    the structure of a quall line    storm of transmission type
收稿日期: 2017-06-21 出版日期: 2018-04-28
ZTFLH:  P458.2  
基金资助: 国家自然科学基金项目(41461164006);广西自然科学基金项目(2016GXNSFAA380184);中国气象局预报员专项(CMAYBY2017-054)
通讯作者: 农孟松,E-mail:nmsong1997@163.com     E-mail: nmsong1997@163.com
作者简介: 翟丽萍(1985),女,广西人,工程师,主要从事短临预报和灾害性天气研究工作.E-mail:mast2535@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
翟丽萍
农孟松
赖珍权
祁丽燕
刘日胜

引用本文:

翟丽萍, 农孟松, 赖珍权, 祁丽燕, 刘日胜. 广西“4·20”暖区飑线的形成及结构[J]. 高原气象, 2018, 37(2): 568-576.

ZHAI Liping, NONG Mengsong, LAI Zhenquan, QI Liyan, LIU Risheng. Formation and Structure of ‘4·20’ Warm Sector Squall Line in Guangxi Province. PLATEAU METEOROLOGY, 2018, 37(2): 568-576.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00058        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/568

Houze R A J, 1982. Cloud clusters and large-scale vertical motions in the tropics[J]. J Meteor Soc Japan, 60(1):396-410.
Houze R A J, Rutledge S A, Biggerstaff M I, et al, 1989. Interpretation of Doppler weather-radar displays is midlatitude mesoscale convective systems[J]. Bull Amer Meteor Soc, 70(6):608-619.
Kuo Y H, Chen G T J, 1990. The Taiwan area mesoscale experiment(TAMEX):An overview[J]. Bull Amer Meteor Soc, 71:488-503.
Rotunno R, Klemp J B, Weisman M L, 1988. A theory for strong, long-lived squall lines[J]. J Atmos Sci, 45(3):463-485.
Weisman M L, Klemp J B, 1984. The structure and classification of numerically simulated convective storms in directionally varying wind shears[J]. Mon Wea Rev, 112(12):2479-2498.
陈玥, 谌芸, 陈涛, 等, 2016. 长江中下游地区暖区暴雨特征分析[J]. 气象, 42(6):724-731. Chen Y, Chen Y, Zhang T, et al, 2016. Characteristics analysis of warm sector rainstorms over the middle lower reaches of the Yangze River[J]. Meteor Mon, 42(6):724-731.
陈元昭, 俞小鼎, 陈训来, 2016. 珠江三角洲地区重大短时强降水的基本流型与环境参量特征[J]. 气象, 42(2):144-155. Chen Y Z, Yu X D, Chen X L, 2016. Characteristics of short time severe rainfall events based on weather flow and key environmental parameters in Pearl River Delta[J]. Meteor Mon, 42(2):144-155.
何立富, 陈涛, 孔期, 2016. 华南暖区暴雨研究进展[J]. 应用气象学报, 27(5):559-569. He L F, Chen T, Kong Q, 2016. A review of studies on prefrontal torrential rain in South China[J]. J App Meteor Sci, 27(5):559-569.
何齐强, 陆汉城, 张铭, 1992. 江淮地区暖区飑线中尺度观测研究[J]. 气象学报, 50(3):290-300. He Q Q, Lu H C, Zhang M, 1992. A mesoscale study of squall line in warm sector of Jianghuai Area[J]. Acta Meteor Sinica, 50(3):290-300.
黄士松, 1986. 华南前汛期暴雨[M]. 广州:广东科技出版社, 94-95. Huang T S, 1986. Torrential Rain of Pre-flood season in South China[M]. Guangzhou:Guangdong Science and Technology Press, 94-95.
寿绍文, 励申申, 姚秀萍, 2003. 中尺度气象学[M]. 北京:气象出版社, 197. Shou S W, Li S S, Yao X P, 2003. Mesoscale meteorology[M]. Beijing:China Meteorological Press, 197.
孙继松, 戴建华, 何立富, 等, 2014. 强对流天气预报的基本原理与技术方法[M]. 北京:气象出版社, 83-86. Sun J S, Dai J H, He L F, et al, 2014. The basic principle and technical method of strong convective weather forecast[M]. Beijing:China Meteorological Press, 83-86.
王宝鉴, 孔祥伟, 傅朝, 等, 2016. 甘肃陇东南一次大暴雨的中尺度特征分析[J]. 高原气象, 35(6):1551-1564. Wang B J, Kong X W, Fu C, et al, 2016. Analysis on mesoscale characteristics of a rainstorm process in Southeastern Gansu[J]. Plateau Meteor, 35(6):1551-1564. DOI:10.7522/j. issn. 1000-0534.2015.00114.
王晓玲, 王海燕, 王珊珊, 等, 2015. 边界层准静止干线触发的中尺度暴雨机理分析[J]. 高原气象, 34(5):1310-1322. Wang X L, Wang H Y, Wang S S, et al, 2015. Analysis on mechanism of mesoscale rainstorm triggered by quasi-stationary dryline in boundary layer[J]. Plateau Meteor, 34(5):1310-1322. DOI:10.7522/j. issn. 1000-0534.2014.00056.
许爱华, 张瑛, 刘献耀, 2001. 江西"暖区"强对流天气的热力和动力条件诊断分析[J]. 气象, 27(5):30-34. Xu A H, Zhang Y, Liu X Z, 2001. Diagnosis of thermal and dynamic conditions of warm area severe convection in Jiangxi Province[J]. Meteor Mon, 27(5):30-34.
许爱华, 孙继松, 许东蓓, 等, 2014. 中国中东部强对流天气的天气形势分类和基本要素配置特征[J]. 气象, 40(4):400-411. Xu A H, Sun J S, Xu D B, et al, 2014. Basic synoptic situation classification and element character of severe convection in China[J]. Meteor Mon, 40(4):400-411.
徐燚, 闫敬华, 王谦谦, 等, 2013. 华南暖区暴雨的一种低层重力波触发机制[J]. 高原气象, 32(4):1050-1061. Xu Y, Yan J H, Wang Q Q, et al, 2013. A low-level gravity wave triggering mechanism for rainstorm of warm zone in South China[J]. Plateau Meteor, 32(4):1050-1061. DOI:10.7522/j. issn. 1000-0534.2012.00100.
张晓美, 蒙伟光, 张艳霞, 等, 2009. 华南暖区暴雨中尺度对流系统的分析[J]. 热带气象学报, 25(5):551-560. Zhang X M, Meng W G, Zhang Y X, et al, 2009. Analysis of mesoscale convective systems associated with a warm sector heavy rainfall event over South China[J]. J Trop Meteor, 25(5):551-560.
赵庆云, 傅朝, 刘新伟, 等, 2017. 西北东部暖区大暴雨中尺度系统演变特征[J]. 高原气象, 36(3):697-704. Zhao Q Y, Fu C, Liu X W, et al, 2017. Characteristics of mesoscale system evolution of torrential rain in warm sector over Northwest China[J]. Plateau Meteor, 36(3):697-704. DOI:10.7522/j. issn. 1000-0534.2016.00140.
翟国庆, 俞樟孝, 1992. 强对流天气发生前期地面风场特征[J]. 大气科学, 5(16):522-529. Zhai G Q, Yu Z X, 1992. The surface characteristics of wind field prior to the occurrence of severe convection weather[J]. Chinese Atmos Sci, 5(16):522-529.
翟丽萍, 农孟松, 屈梅芳, 等, 2013. 相同大尺度环流背景下不同类型强对流天气个例分析[J]. 暴雨灾害, 32(4):346-353. Zhai L P, Nong M S, Qu M F, et al, 2013. Analysis of different types of severe convective weather cases under the same large-scale circulation[J]. Torrential Rain Disasters, 32(4):346-353.
郑媛媛, 张雪晨, 朱红芳, 等, 2014. 东北冷涡对江淮飑线生成的影响研究[J]. 高原气象, 33(1):261-269. Zhen Y Y, Zhang X C, Zhu H F, et al, 2014. Study of squall line genesis with northeast cold vortex[J]. Plateau Meteor, 33(1):261-269. DOI:10.7522/j. issn. 1000-0534.2013.00005.
朱乾根, 林锦瑞, 寿绍文, 等, 2000. 天气学原理和方法[M]. 北京:气象出版社, 55-60. Zhu Q G, Lin J R, Shou S W, et al, 2000. Principle of aynoptic meteorology[M]. Beijing:China Meteorological Press, 55-60.
[1] 王莹, 苗峻峰, 苏涛. 海南岛地形对局地海风降水强度和分布影响的数值模拟[J]. 高原气象, 2018, 37(1): 207-222.
[2] 赵庆云, 傅朝, 刘新伟, 陈晓燕, 周晓军. 西北东部暖区大暴雨中尺度系统演变特征[J]. 高原气象, 2017, 36(3): 697-704.
[3] 武麦凤, 吉庆, 武维刚. 一次槽前“干”对流背景下阵风锋天气过程分析[J]. 高原气象, 2017, 36(3): 845-851.
[4] 常煜, 李秀娟, 陈超, 马素艳, 仲夏, 赵斐, 马学峰. 内蒙古一次暴雨过程中尺度特征及成因分析[J]. 高原气象, 2016, 35(2): 432-443.
[5] 万明波, 孟宪贵, 刁秀广. 山东极端强降雨风暴传播类型及流场结构特征[J]. 高原气象, 2015, 34(6): 1741-1750.
[6] 王天义, 朱克云, 张杰, 周筠珺. 拉萨一次热力雷暴的结构特征及数值模拟[J]. 高原气象, 2015, 34(5): 1237-1248.
[7] 刁秀广, 孟宪贵, 万明波, 张骞, 李静. 源于飑线前期和强降雨带后期的弓形回波雷达产品特征及预警[J]. 高原气象, 2015, 34(5): 1486-1494.
[8] 黄勇, 吴林林, 冯妍, 翟菁, 刘慧娟, 袁野. 两次对流云合并过程的双偏振雷达观测研究[J]. 高原气象, 2015, 34(5): 1474-1485.
[9] 潘留杰, 张宏芳, 侯建忠, 袁小林. 弱天气系统强迫下黄土高原强对流云的初生及演变[J]. 高原气象, 2015, 34(4): 982-990.
[10] 孙燕, 韩桂荣, 李超. 夏季东北冷涡异常对淮河流域降水影响机制的数值模拟[J]. 高原气象, 2015, 34(4): 1149-1157.
[11] 徐芬, 杨吉, 夏文梅, 周红根. 雷达强度数据中的阵风锋特征统计和自动识别[J]. , 2015, 34(2): 586-595.
[12] 杜正静, 何玉龙, 熊方, 邓晓红, 石开银, 彭倩. 滇黔准静止锋诱发贵州春季暴雨的锋生机制分析[J]. , 2015, 34(2): 357-367.
[13] 王晓峰, 许晓林, 张蕾, 王平, 徐同. 上海"0731"局地强对流观测分析[J]. 高原气象, 2014, 33(6): 1627-1639.
[14] 张一平, 俞小鼎, 孙景兰, 梁俊平, 李周. 一次槽后型大暴雨伴冰雹的形成机制和雷达观测分析[J]. , 2014, 33(4): 1093-1104.
[15] 徐芬, 王博妮, 夏文梅, 徐琪. 长江中下游地区一次春季暴雨过程的多普勒雷达速度特征分析与研究[J]. 高原气象, 2014, 33(2): 548-556.