Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (3): 602-613    DOI: 10.7522/j.issn.1000-0534.2017.00082
论文     
非ENSO事件次年大西洋海温异常对夏季青藏高原大气热源准双周低频活跃度的影响
于浩慧, 祁莉, 何金海
南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏 南京 210044
The Possible Influence of Atlantic Sea Surface Temperature Anomalies for Low-Frequency Intensity over Qinghai-Tibetan Plateau during Summer of No-ENSO Events Following Years
YU Haohui, QI Li, HE Jinhai
Collaborative Innovation Center on Forecast and Education of Meteorological Disasters(CIC-FEMD), Najing 210044, Jiangsu, China
 全文: PDF 
摘要: 夏季青藏高原大气热源准双周低频活动明显,并存在显著年际变化。利用NCEP/NCAR再分析资料,定义夏季高原区域内大气热源准双周分量的标准化方差为该年的低频活跃度,其对中国东部天气变化有一定指示意义,高原低频活跃度较大时,中国东部夏季存在“旱涝并存”和“旱涝急转”现象。通过诊断分析,发现多个海温关键区都对低频活跃度有一定影响,不同年份的主导影响因素不同。ENSO事件次年,主要是太平洋海盆区域内海温异常影响青藏高原夏季低频活跃度;非ENSO事件次年,大西洋海盆区域内的三极型海温异常起主要影响作用。在非ENSO事件次年,前期冬春季大西洋三极型海温异常能够激发出异常的类EU波列,影响高原区域上空的大气环流。在同样的触发机制下,正位相时的类EU波列有利于云辐射反馈的发展,负位相时的类EU波列不利于云辐射反馈的发展,从而影响夏季高原热源低频活跃度。
关键词: 青藏高原大气视热源低频活跃度年际变化    
Abstract: Quasi-biweekly oscillation of atmospheric heat source (〈Q1〉) over Qinghai-Tibetan Plateau (QTP)is significant according to many previous studies, and it can be used as a predictor of the climate change in Eastern China. In quasi-biweekly oscillation active year, Eastern China is likely to experience a fast conversion from flood to drought or from drought to flood. On the basis of NCEP/NCAR reanalysis data and daily 〈Q1〉 empirical orthogonal function results, standardized variance was defined as the index of Low-frequency intensity (ITPI) over QTP to describe th e low-frequency activity. The main results showed that there is an annual variance in the low-frequency activity intensity, Pacific Ocean and Atlantic Ocean can both take effects on quasi-biweekly oscillation over QTP, the main influential factor is different in different years. During the following year of the ENSO events, the tropical pacific sea surface temperature anomaly is the key factor; During the following year of the No-ENSO events, the Atlantic Ocean triple anomaly sea surface temperature is the dominant factor which can motivate the anomaly EU wave train thus affecting the atmospheric circulation. Under the same trigger condition, the positive phase of the EU wave train is in favor of the development of cloud radiant feedback and then influence the low-frequency intensity, While the negative phase of EU wave train can suppress the development of cloud radiant feedback which cause weak Quasi-biweekly oscillation of atmosphere heat source over QTP.
Key words: Qinghai-Tibetan Plateau    atmospheric heat source    low-frequency intensity    annual variance
收稿日期: 2017-08-08 出版日期: 2018-06-24
ZTFLH:  P461+.2  
基金资助: 国家自然科学基金项目(91337216,41775047);江苏省高校优势学科建设工程资助项目(PAPD);长江学者和创新团队发展计划项目(PCSIRT);江苏省青蓝工程创新团队项目
通讯作者: 祁莉(1981),女,浙江宁波人,教授,主要从事季风和海陆气相互作用研究.E-mail:qili@nuist.edu.cn     E-mail: qili@nuist.edu.cn
作者简介: 于浩慧(1993),女,湖北十堰人,硕士研究生,主要从事青藏高原与海陆气相互作用研究.E-mail:yhh_popins@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
于浩慧
祁莉
何金海

引用本文:

于浩慧, 祁莉, 何金海. 非ENSO事件次年大西洋海温异常对夏季青藏高原大气热源准双周低频活跃度的影响[J]. 高原气象, 2018, 37(3): 602-613.

YU Haohui, QI Li, HE Jinhai. The Possible Influence of Atlantic Sea Surface Temperature Anomalies for Low-Frequency Intensity over Qinghai-Tibetan Plateau during Summer of No-ENSO Events Following Years. Plateau Meteorology, 2018, 37(3): 602-613.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00082        http://www.gyqx.ac.cn/CN/Y2018/V37/I3/602

Chiang J C, Vimont D J, 2004.Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability[J].J Climate, 17(21):4143-4158.
Flohn H, 1957.Large-scale aspects of the summer monsoon in South and East Asia[J].J Meteor Soc Japan, 75:180-186.
Gu D, Philander S G H, 1995.Secular changes of annual and interannual variability in the Tropics during the past century[J].J Climate, 8(8):864-876.
Hoskins B J, Karoly D J, 1981.The steady linear response of a spherical atmosphere to thermal and orographic forcing[J].J Atmos Sci, 38(6):1179-1196.
Kalnay E, Kanamitsu M, Kistler R, et al, 1996.The NCEP/NCAR 40-year reanalysis project[J].Bull Amer Meteor Soc, 77(3):437-471.
North G R, Bell T L, Cahalan R F, et al, 1982.Sampling errors in the estimation of empirical orthogonal functions[J].Mon Wea Rev, 110(7):699-706.
Wallace J M, Gutzler D S, 1981.Teleconnections in the geopotential height field during the Northern Hemisphere Winter[J].Mon Wea Rev, 109(4):784-812.
Wang B, Xu X, 1997.Northern Hemisphere summer monsoon singularities and climatological interseasonal oscillation[J].J Climate, 10(5):1071-1085.
Wang M, Duan A, 2015.Quasi-biweekly oscillation over the Tibetan Plateau and its link with the Asian Summer Monsoon[J].J Climate, 28(4A):A-135-A-143.
Yanai M, Esbensen S, Chu J H, 1973.Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets[J].J Atmos Sci, 30(4):611-627.
Yang J, Bao Q, Wang B, et al, 2016.Characterizing two types of transientintraseasonal oscillations in the Eastern Tibetan Plateau summer rainfall[J].Climate Dyn, 48(5/6):1749-1768.
Yang S, Li T, 2016.Causes ofintraseasonal diabatic heating variability over and near the Tibetan Plateau in boreal summer[J].Climate Dyn, 49(7/8):2385-2406.
陈隆勋, 龚知本, 陈嘉滨, 等, 1965.东亚地区大气辐射能收支(三)——云天大气的地气系统热量收支[J].气象学报, 35(1):6-17.Chen L X, Gong Z B, Chen J B, et al, 1965.The energy balance of atmosphere radiation in east Asia[J].Acta Meteor Sin, 35(1):6-17.
何金海, 2011.青藏高原大气热源特征及其影响和可能机制[M].北京:气象出版社.He J H, 2011.The feature of Plateau Heat Sources and its possible influence together with the mechanism[M].Beijing:China Meteorological Press.
何金海, 杨松, 1992.东亚地区低频振荡的经向传播及中纬度的低频波动[J].气象学报, 50(2):190-198.He J H, Yang S, 1992.Meridional propagation of east Asia Low-frequency mode and midlatitude low-frequency waves[J].Acta Meteor Sinica, 50(2):190-198.
李燕, 闫加海, 张冬峰, 2018.青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J].高原气象, 37(2):317-324.Li Y, Yan J H, Zhang D F, 2018.Diagnosis and simulation on the relationship between snow depth over Qinghai-Tibetan Plateau and summer precipitation in eastern China[J].Plateau Meteor, 37(2):317-324.DOI:10.7522/j.issn.1000-0534.2017.00040.
李永华, 卢楚翰, 徐海明, 等, 2011.夏季青藏高原大气热源与西南地区东部旱涝的关系[J].大气科学, 35(3):422-434.Li Y H, Lu C H, Xu H M, et al, 2011.Contemporaneous relationships between summer atmospheric source over the Tibetan Plateau and drought/flood in eastern Southwest China[J].Chinese J Atmos Sci, 35(3):422-434.
刘新, 吴国雄, 李伟平, 等, 2001.夏季青藏高原加热和大尺度流场的热力适应[J].自然科学进展:国家重点实验室通讯, 11(1):33-39.Liu X, Wu G X, Li W P, et al, 2001.Thermal adaptation of the large-scale circulation to the summer heating over the Tibetan Plateau[J].Progress in Natural Science:Materials International, 11(1):33-39.
龙妍妍, 范广洲, 李飞, 等, 2018.高原夏季风对中国夏季极端降水的影响研究[J].高原气象, 37(1):1-12.Long Y Y, Fan G Z, Li F, et al, 2018.Study on the influence of plateau summer monsoon for summertime extreme precipitation over China[J].Plateau Meteor, 37(1):1-12.DOI:10.7522/j.issn.1000-0534.2017.00010.
钱永甫, 张琼, 张学洪, 2002.南亚高压与我国盛夏气候异常[J].南京大学学报(自然科学), 38(3):295-307.Qian Y F, Zhang Q, Zhang X H, 2002.The South Asian High and its effects on China's mid-summer abnormality[J].Journal of Nanjing University (Nature Science), 38(3):295-307.
陶诗言, 2000.第二次青藏高原大气科学试验理论研究进展(二)[M].北京:气象出版社.Tao S Y, 2000.Theory research development of TIPEX, Part 2[M].Beijing:China Meteorological Press.
汪宁, 2014.欧亚遥相关型演变的动力机制及其气候效应[D].南京:南京大学.Wang N, 2014.The dynamics of Eurasian teleconnection pattern and its influence on climate anomalies over China[D].Nanjing:Nanjing University.
王美蓉, 2012.近30年青藏高原大气热源变化趋势及其对中国夏季降水年代际变化的影响[D].南京:南京信息工程大学.Wang M R, 2012.Trend in the atmospheric heat source over the Tibetan Plateau and its influence[D].Nanjing:Nanjing University of Information Science and Technology.
魏凤英, 2007.现代气候统计诊断与预测技术[M].北京:气象出版社.Wei F Y, 2007.Modern methods for diagnosing and forecasting technology[M].Beijing:China Meteorological Press.
吴国雄, 刘屹岷, 2000.热力适应、过流、频散和副高 I.热力适应和过流[J].大气科学, 24(4):433-446.Wu G X, Liu Y M, 2000.Thermal adaptation, overshooting, dispersion, and subtropical anticyclone Part I:thermal adaptation and overshooting[J].Chinese J Atmos Sci, 24(4):433-446.
吴洪宝, 吴蕾, 2010.气候变率诊断和预测方法[M].北京:气象出版社.Wu H B, Wu L, 2010.Methods for diagnosing and forecasting climate variability[M].Beijing:China Meteorological Press.
吴洪宝, 1997.小波能量谱及其在热带太平洋SSTA多时间尺度结构研究中的应用[J].大气科学学报, 20(3):301-307.Wu H B, 1997.Wes and its application to multiple timescale structure study of SSTA in the tropical Pacific[J].Trans Atmos Sci, 20(3):301-307.
谢安, 叶谦, 陈隆勋, 1989.青藏高原及其附近地区大气周期振荡在OLR资料上的反映[J].气象学报, 47(3):272-278.Xie A, Ye Q, Chen L X, 1989.The atmospheric oscillation over the Tibetan Plateau and surrounding areas as revealed from OLR data[J].Acta Meteor Sinica, 47(3):272-278.
徐海明, 何金海, 董敏, 2001.江淮入梅的年际变化及其与北大西洋涛动和海温异常的联系[J].气象学报, 59(6):694-706.Xu H M, He J H, Dong M, 2001.Interannual variability of the Meiyu onset and its association with north Atlantic Oscillation and SSTA over north Atlantic[J].Acta Meteor Sinica, 59(6):694-706.
徐祥德, 2015.青藏高原影响与动力学机制探讨[M].北京:气象出版社.Xu X D, 2015.Exploring the effect of Tibetan Plateau and its dynamical mechanisms[M].Beijing:China Meteorological Press.
杨修群, 黄士松, 1992.北半球夏季遥相关型的水平结构和能量特征[J].气象科学, 12(2):119-127.Yang X Q, Huang S S, 1992.Horizontal structure and energetics of northern hemisphere summertime teleconnection patterns[J].Meteor Sci, 12(2):119-127.
姚菊香, 李丽平, 罗璇, 等, 2012.提取准双周和准一月低频振荡的Lanczos滤波器及其应用[J].大气科学学报, 35(2):221-228.Yao J X, Li L P, Luo X, et al, 2012.Lanczos filter suitable for filtering quasi-two-week and quasi-one-month oscillations and its applications[J].Trans Atmos Sci, 35(2):221-228.
叶笃正, 1979.青藏高原气象学[M].北京:科学出版社.Ye D Z, 1979.Meteorology of the Tibet Plateau[M].Beijing:Science Press.
叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报, 28(2):108-121.Ye D Z, Luo S W, Zhu B Z, 1957.The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J].Acta Meteor Sinica, 28(2):108-121.
周俊前, 刘新, 李伟平, 等, 2016.青藏高原春季地表感热异常对西北地区东部降水变化的影响[J].高原气象, 35(4):845-853.Zhou J Q, Liu X, Li W P, et al, 2016.Relationship between surface sensible heating over the Qinghai-Xizang Plateau and precipitation in the eastern part of Northwest China in spring[J].Plateau Meteor, 35(4):845-853.DOI:10.7522/j.issn.1000-0534.2015.00053.
朱文会, 徐祥德, 陈渭民, 等, 2013.影响高原大气热源的海温强信号及其相关大气结构[J].气象科技, 41(4):670-681.Zhu W H, Xu X D, Chen W M, et al, 2013.Sea surface temperature strong signals influencing plateau heat sources and its correlated atmospheric structure[J].Meteor Sci Technol, 41(4):670-681.
曾钰婵, 范广洲, 赖欣, 等, 2016.青藏高原季风活动与大气热源/汇的关系[J].高原气象, 35(5):1148-1156.Zeng Y C, Fan G Z, Lai X, et al, 2016.Relationship between the Qinghai-Xizang Plateau monsoon and the atmospheric heat source/sink[J].Plateau Meteor, 35(5):1148-1156.DOI:10.7522/j.issn.1000-0534.2015.00093.
[1] 赵玉衡, 封国林, 郑志海. 基于统计方法的典型冬季海温变率分类研究[J]. 高原气象, 2017, 36(5): 1357-1367.
[2] 李春晖, 潘蔚娟, 李霞, 刘燕. 华南春季降水及其季节内振荡强度的年代际变化特征[J]. 高原气象, 2017, 36(2): 491-500.
[3] 杨建玲, 胡海波, 穆建华, 王敏, 胡文东. 印度洋海盆模影响西北东部5月降水的数值模拟研究[J]. 高原气象, 2017, 36(2): 510-516.
[4] 李栋梁, 张茜, 姚慧茹, 李潇. 北印度夏季风与中国河套及邻近地区盛夏降水的联系[J]. 高原气象, 2016, 35(6): 1512-1523.
[5] 张蓬勃, 管兆勇, 刘蕾, 姜玥宏, 何婧. 与澳高相关的海洋性大陆区域海温异常对中国夏季气候的可能影响[J]. 高原气象, 2016, 35(1): 188-197.
[6] 杨建玲, 李艳春, 穆建华, 王素艳, 王敏, 田磊. 热带印度洋海温与西北地区东部降水关系研究[J]. 高原气象, 2015, 34(3): 690-699.
[7] 杨建玲, 郑广芬, 王素艳, 穆建华, 王敏, 田磊. 印度洋海盆模影响西北东部降水的大气环流分析[J]. 高原气象, 2015, 34(3): 700-705.
[8] 任倩, 何金海, 祁莉, 张文君. 中国南方冬季降水与前期暖池热含量异常的关系及可能机制[J]. , 2014, 33(6): 1568-1578.
[9] 王芬, 曹杰, 唐浩鹏, 谷晓平, 杨若文. 前期北太平洋海温异常对贵州夏季降水的影响[J]. , 2014, 33(4): 925-936.
[10] 龚道溢, 朱锦红, 王绍武. 西伯利亚高压对亚洲大陆的气候影响分析[J]. 高原气象, 2001, 21(1): 8-14.
[11] 赵玉衡, 封国林, 郑志海. 基于统计方法的典型冬季海温变率分类研究[J]. 高原气象, 2017, 36(5): 1357-1367.