Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (3): 850-862    DOI: 10.7522/j.issn.1000-0534.2018.00046
论文     
对流冷池对黑风暴沙尘抬升和传输影响的大涡模拟研究
张君霞1, 黄倩1, 田文寿1, 郭振海2, 田红瑛1, 吴稀稀1
1. 兰州大学大气科学学院/半干旱气候变化教育部重点实验室, 甘肃 兰州 730000;
2. 中国科学院大气物理研究所/大气科学和地球流体力学数值模拟国家重点实验室, 北京 100080
Large Eddy Simulation Study of Effects of Convective Cold Pools on Dust-Uplift and Transportion of Black Storm
ZHANG Junxia1, HUANG Qian1, TIAN Wenshou1, GUO Zhenhai2, TIAN Hongying1, WU Xixi1
1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China;
2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
 全文: PDF 
摘要: 利用“西北干旱区陆-气相互作用野外观测实验”加密观测期间敦煌站的温度探空廓线作为大涡模式的初始场,通过在模式中设置冷源的方法,模拟研究对流冷池中的湍流结构特征,以及冷池头部和尾部的湍流对沙尘抬升和垂直传输的影响;进一步通过改变冷源冷却率和冷源半径大小的敏感性试验,探究冷源强度和尺度变化对对流冷池内湍流结构、冷池移动速度和沙尘抬升效率等特征的影响。研究表明:(1)模式模拟的对流冷池结构特征与观测结果较为一致,冷池的头部为较大的湍流涡旋,尾部是受头部下沉气流的阻挡和风切变共同作用形成的湍流涡旋,强度和尺度较小,且距离头部越远,尾部湍流强度也越弱。(2)冷池头部涡旋引起的沙尘抬升潜势较尾部的大,冷池密度流抬升的沙尘大部分在冷池内混合,仅少部分扩散到冷池外,头部的沙尘绝对浓度约是尾部的两倍。(3)增大模式冷源冷却率和冷源尺度,冷池密度流强度增强,头部涡旋移动速度增大,产生的沙尘抬升潜势也增大,沙尘可被冷池内增强的湍流涡旋传输到较高的高度,但由于冷池与环境大气的夹卷作用也增强,冷池消散也较快。
关键词: 黑风暴对流冷池沙尘抬升潜势(DUP)大涡模拟湍流    
Abstract: Using temperature profiles observed from Dunhuang meteorological station during the intensive period of a land-atmosphere interaction field experiment over the arid region of North-west China as initial field for the Large Eddy Model (LEM), characteristics of turbulent structure of convective cold pool and effects of turbulence of the cold pool head and tail on dust uplifting and vertical transportation were investigated by setting cold source in the model. Furthermore, sensitivity tests with varying cooling rate and the size of cold source in the model center were performed to study the effects of intensity and scale of the cold source on the turbulent structure of convective cold pool, the propagation velocity of leading edge of cold pool and the dust uplifted rate, etc. The results show that:(1) The simulated structural characteristics of the convective cold pool are consistent with observations. The head of the convective cold pool is a large turbulent vortex. There is a weaker and smaller turbulence in the tail due to effects of blocking of downdraft from head's vortex and the wind shear. Turbulence in the tail becomes weaker if it is far from the head. (2) Dust uplift potential (DUP) caused by the head vortex is much larger than that of the tail. Dust is largely trapped in the well-mixed cold-pool density current except that only a small fraction of dust diffuses outside the cold pool. The absolute concentration of dust in the head is about twice as much as that in the tail. (3) Simulated results by changing cooling rate and size of cold source in the LEM presented that intensity and moving speed of leading edge of cold-pool density current increases with increasing cooling rate and size. It leads to that more dust is uplifted from the surface and more dust is transported to the higher altitude due to the enhanced turbulence of the cold pool, but cold pool becomes less long-lived because of the stronger entrainment of the ambient air with increasing cooling rate and size.
Key words: Black storm    convective cold pool    dust uplift potential (DUP)    large eddy simulation    turbulence
收稿日期: 2017-11-28 出版日期: 2018-06-24
ZTFLH:  P435  
基金资助: 国家自然科学基金项目(41775013,41575038)
通讯作者: 黄倩(1970),女,甘肃兰州人,副教授,从事大气边界层湍流和沙尘传输方面的研究工作.E-mail:qianhuang@lzu.edu.cn     E-mail: qianhuang@lzu.edu.cn
作者简介: 张君霞(1990),女,甘肃白银人,硕士研究生,从事大气边界层对流和沙尘传输方面的研究工作.E-mail:18419611389@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张君霞
黄倩
田文寿
郭振海
田红瑛
吴稀稀

引用本文:

张君霞, 黄倩, 田文寿, 郭振海, 田红瑛, 吴稀稀. 对流冷池对黑风暴沙尘抬升和传输影响的大涡模拟研究[J]. 高原气象, 2018, 37(3): 850-862.

ZHANG Junxia, HUANG Qian, TIAN Wenshou, GUO Zhenhai, TIAN Hongying, WU Xixi. Large Eddy Simulation Study of Effects of Convective Cold Pools on Dust-Uplift and Transportion of Black Storm. Plateau Meteorology, 2018, 37(3): 850-862.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00046        http://www.gyqx.ac.cn/CN/Y2018/V37/I3/850

Anabor V, Rizza U, Nascimento E L, et al, 2011.Large-eddy simulation of a microburst[J].Atmos Chem Phys, 11(17):9323-9331.
Bagnod R A, 1941.The physics of blown sand and desert dunes[M].London:Methuen, 265.
Benjamin T B, 1968.Gravity currents and related phenomena[J].J Fluid Mech, 31(2):209-248.
Charba J, 1974.Application of gravity current model to analysis of squall-line gust front[J].Mon Wea Rev, 102(2):140-156.
Chomette O, Legrand M, Marticorena B, 1999.Determination of the wind speed threshold for the emission of desert dust using satellite remote sensing in the thermal infrared[J].J Geophys Res Atmos, 104(D24):31207-31215.
Cowie S M, Knippertz P, Marsham J H, 2014.A climatology of dust emission events from northern Africa using long-term surface observations[J].Atmos Chem Phys, 14(16):8579-8597.
Crouvi O, Dayan U, Amit R, et al, 2017.An Israeli haboob:Sea breeze activating local anthropogenic dust sources in the Negev loess[J].Aeolian Res, 24:39-52.
Flamant C, Chaboureau J P, Parker D J, et al, 2007.Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African monsoon[J].Quart J Roy Meteor Soc, 133(626):1175-1189.
Gray M E B, Petch J, Derbyshire S H, et al, 2001.Version 2.3 of the Met.Office large eddy model[Z].The Met.Office, Exeter, UK.
Haywood J M, Allan R P, Culverwell I, et al, 2005.Can desert dust explain the outgoing longwave radiationanomaly over the Sahara during July 2003?[J].J Geophys Res, 110(D5):D05105.DOI:10.1029/2004JD005232.
Knippertz P, Todd M C, 2010.The central west Saharan dust hot spot and its relation to African easterly waves and extra-tropical-disturbances[J].J Geophys Res Atmos, 115(D12).DOI:10.1029/2009JD012819.
Knippertz P, Deutscher C, Kandler K, et al, 2007.Dust mobilization due to density currents in the Atlas region:Observations from the Saharan Mineral Dust Experiment 2006 field campaign[J].J Geophys Res Atmos, 112(D21).DOI:10.1029/2007JD008774.
Knippertz P, Trentmann J, Seifert A, 2009.High-resolution simulations of convective cold pools over the northwestern Sahara[J].J Geophys Res Atmos, 114(D8).DOI:10.1029/2008JD011271.
Lawson T J.1971.Haboob structure at Khartoum[J].Weather, 26(3):105-112.
Mahalov A, Pacheco J R, Voropayev S I, et al, 2000.Effects of rotation on fronts of density currents[J].Phys Lett A, 270(3/4):149-156.
Marsham J H, Parker D J, Grams C M, et al, 2008.Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara[J].Atmos Chem Phys, 8(23):6979-6993.
Marsham J H, Knippertz P, Dixon N S, et al, 2011.The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer[J].Geophys Res Lett, 38(16):239-255.DOI:10.1029/2011GL048368.
Marsham J H, Hobby M, Allen C J T, et al, 2013.Meteorology and dust in the central Sahara:Observations from Fennec supersite-1 during the June 2011 intensive observation period[J].J Geophys Res Atmos, 118(10):4069-4089.
Marticorena B, Bergametti G, 1995.Modeling the atmospheric dust cycle:1.Design of a soil-derived dust emission scheme[J].J Geophys Res Atmos, 100(D8):16415-16430.
Miller S D, Kuciauskas A P, Liu M, et al, 2008.Haboob dust storms of the southern Arabian Peninsula[J].J Geophys Res Atmos, 113(D1):D01202.DOI:10.1029/2007JD008550.
Mueller C K, Carbone R E, 1987.Dynamics of a thunderstorm outflow[J].J Atmos Sci, 44(15):1879-1898.
Orf L G, Anderson J R, Straka J M, 1996.A three-dimensional numerical analysis of colliding microburst outflow dynamics[J].J Atmos Sci, 53(17):2490-2511.
Orf L G, Anderson J R, 1999.A numerical study of traveling microbursts[J].Mon Wea Rev, 127(6):1244-1258.
Provod M, Marsham J H, Parker D J, et al, 2016.A characterization of cold pools in the West African Sahel[J].Mon Wea Rev, 144(5):1923-1934.
Raman A, Arellano A F, Brost J J, 2014.Revisiting haboobs in the southwestern United States:An observational case study of the 5 July 2011 Phoenix dust storm[J].Atmos Environ, 89:179-188.
Roberts A, Knippertz P, 2012.Haboobs:convectively generated dust storms in West Africa[J].Weather, 67(12):311-316.
Simpson J E, 1997.Gravity currents:In the environment and the laboratory[M].Cambridge:Cambridge university press.
Strong C L, Parsons K, McTainsh G H, et al, 2011.Dust transporting wind systems in the lower Lake Eyre Basin, Australia:A preliminary study[J].Aeolian Res, 2(4):205-214.
Takemi T, 1999.Structure and evolution of a severe squall line over the arid region in northwest China[J].Mon Wea Rev, 127(6):1301-1309.
Vukovic A, Vujadinovic M, Pejanovic G, et al, 2014.Numerical simulation of "An American Haboob"[J].Atmos Chem Phys, 14(7):26175-26215.
陈伟民, 王强, 1996."5·5"黑风暴中-β尺度飑线的初步数值模拟[J].气象学报, 54(6):684-692.Chen W M, Wang Q, 1996.Numerical simulation of a meso-β squall line on the "5·5" dark storm[J].Acta Meteor Sinica, 54(6):684-692.
胡隐樵, 光田宁, 1996.强沙尘暴发展与干飑线-黑风暴形成的一个机理分析[J].高原气象, 15(2):178-185.Hu Y Q, Yasushi M, 1996.Development of the strong dust storm and dry squall line-A mechanism analysis on generating black storm[J].Plateau Meteor, 15(2):178-185.
胡隐樵, 光田宁, 1997.强沙尘暴微气象特征和局地触发机制[J].大气科学, 21(5):581-589.Hu Y Q, Yasushi M, 1997.Micrometeorological characteristics and local triggering mechanism of strong dust storm[J].Chinese J Atmos Sci, 21(5):581-589.
黄倩, 王蓉, 田文寿, 等, 2014.风切变对边界层对流影响的大涡模拟研究[J].气象学报, 72(1):100-115.Huang Q, Wang R, Tian W S, et al, 2014.Study of the impact of wind shear on boundary layer convection based on the large eddy simulation[J].Acta Meteor Sinica, 72(1):100-115.DOI:10.11676/qxxb2014.007.
江吉喜, 1993.1993年5月5日甘肃等地特大沙尘暴成因分析[J].干旱气象, (3):35-39.Jiang J X, 1993.Analysis on formation for black storm in Gansu Province on May 5[J].J Arid Meteor, (3):35-39.
江吉喜, 1995.一次特大沙尘暴成因的卫星云图分析[J].应用气象学报, 6(2):177-184.Jiang J X, 1995.A study of formation for black storm using GMS-4 imagery[J].J Appl Meteor Sci, 6(2):177-184.
李耀辉, 沈洁, 赵建华, 等, 2014.地形对民勤沙尘暴发生发展影响的数值模拟研究-以一次特强沙尘暴为例[J].中国沙漠, 34(3):849-860.Li Y H, Shen J, Zhao J H, et al, 2014.Simulation of terrain effect to the development of sandstorm in Minqin-take a heavy sandstorm for example[J].J Desert Res, 34(3):849-860.DOI:10.7522/j.issn.1000-694X.2013.00385.
李岩瑛, 张强, 陈英, 等, 2014.中国西北干旱区沙尘暴源地风沙大气边界层特征[J].中国沙漠, 34(1):206-214.Li Y Y, Zhang Q, Chen Y, et al, 2014.Vertical structure of atmosphere boundary layer during wind-sandstorm process over sandstorm source in arid of Northwest China[J].J Desert Res, 34(1):206-214.DOI:10.7522/j.issn.1000-694X.2013.00301.
刘景涛, 郑明倩, 2003.内蒙古中西部强和特强沙尘暴的气候学特征[J].高原气象, 22(1):51-64.Liu J T, Zheng M Q, 2003.Climate characteristics of strong and very strong sand storms in the middle and west parts of Inner Mongolia[J].Plateau Meteor, 22(1):51-64.
钱莉, 杨永龙, 王荣喆, 2011.河西走廊"2010.4.24"黑风成因分析[J].高原气象, 30(6):1653-1660.Qian L, Yang Y L, Wang R Z, 2011.Analysis on black storm cause in Hexi corridor on 24 April 2010[J].Plateau Meteor, 30(6):1653-1660.
钱正安, 贺慧霞, 瞿章, 等, 1997.我国西北沙尘暴的分级标准:中国沙尘暴研究[M].北京:气象出版社, 1-10.Qian Z A, He H X, Qu Z, et al, 1997.Classification criteria of dust storm in Northwest China:A study of sandstorm in China[M].Beijing:Meteorological Press, 1-10.
钱正安, 宋敏红, 吴统文, 等, 2017.世界干旱气候研究动态及进展综述(Ⅰ):若干主要干旱区国家的研究动态及联合国的贡献[J].高原气象, 36(6):1433-1456.Qian Z A, Song M H, Wu T W, et al, 2017.Review of advances in world arid climate research(I).Development and contribution of some main dry land countries and the UN[J].Plateau Meteor, 36(6):1433-1456.DOI:10.7255/j.issn.1000-0534.2017.00076.
宿兴涛, 许丽人, 魏强, 等, 2016.东亚地区沙尘气溶胶对降水的影响研究[J].高原气象, 35(1):211-219.Su X, Xu L R, Wei Q, et al, 2016.Study of impacts of dust aerosol on precipitation over East Asia[J].Plateau Meteor, 35(1):211-219.DOI:10.7522/j.issn.1000-0534.2014.00091.
王伏村, 付双喜, 张德玉, 等, 2014.一次雷暴大风引发的强沙尘暴天气的中尺度系统分析[J].干旱气象, 32(6):954-961.Wang F C, Fu S X, Zhang D Y, et al, 2014.Analysis on meteorological system of a strong dust storm triggered by thunderstorm[J].J Arid Meteor, 32(6):954-961.DOI:10.11755/j.issn.1006-7639(2014)-06-0954.
王式功, 杨德保, 金炯, 等, 1995.我国西北地区黑风暴的成因和对策[J].中国沙漠, 15(1):19-30.Wang S G, Yang D B, Jin J, et al, 1995.Study on the formative causes and countermeasures of the catastrophic sandstorm occurred in northwest China[J].J Desert Res, 15(1):19-30.
徐国昌, 陈敏连, 吴国雄, 1979.甘肃省"4.22"特大沙暴分析[J].气象学报, 37(4):28-37.Xu G C, Chen M L, Wu G X, 1979.On an extraordinary heavy sandstorm on April 22nd in China[J].Acta Meteor Sinica, 37(4):28-37.
徐国昌, 2008.强沙尘暴天气过程中的若干问题思考[J].干旱气象, 26(2):9-11.Xu G C, 2008.Dust storm effect on the short term synoptic process[J].J Arid Meteor, 26(2):9-11.
杨克明, 韩建钢, 顾秋瑾, 等, 1993."5·5"黑风暴过程初步探讨[J].气象, 19(12):23-28.Yang K M, Han J G, Gu Q J, et al.1993.A study of "5·5" severe black storm[J].Meteor Mon, 19(12):23-28.
于海跃, 李红英, 张玉香, 2016."4.23" 特强沙尘暴天气成因分析[J].中国农学通报, 32(19):136-141.Yu H Y, Li H Y, Zhang Y X, 2016.Cause analysis of a heavy sandstorm[J].Chinese Agricultural Science Bulletin, 32(19):136-141.
张强, 王胜, 2005.论特强沙尘暴 (黑风) 的物理特征及其气候效应[J].中国沙漠, 25(5):675-681.Zhang Q, Wang S, 2005.On physical characteristics of heavy dust storm and its climatic effect[J].J Desert Res, 25(5):675-681.
赵光平, 郑广芬, 王卫东, 2003.宁夏特强沙尘暴气候背景及其成灾规律研究[J].中国沙漠, 23(4):420-427.Zhao G P, Zhen G F, Wang W D, 2003.climatic background and disaster characteristics of severe sandstorms in Ningxia[J].J Desert Res, 23(4):420-427.
赵明瑞, 闫大同, 李岩瑛, 等, 2013.甘肃民勤20012010年沙尘暴变化特征及原因分析[J].中国沙漠, 33(4):1144-1149.Zhao M R, Yan D T, Li Y Y, et al, 2013.Change characteristics of sandstorm frequency and its causes on 20012010 over Minqin, Gansu, China[J].J Desert Res, 33(4):1144-1149.
赵旋, 李耀辉, 康富贵, 等, 2012."4·24"民勤特强沙尘暴过程初步分析[J].干旱区资源与环境, 26(6):40-46.Zhao X, Li Y H, Kang F G, et al, 2012.Analysis on the strong sandstorm in Minqin on April 24, 2010[J].J Arid Land Resour Environ.26(6):40-46.
郑新江, 刘诚, 赵亚民, 等, 1993."5·5"沙尘暴天气的云图特征[J].干旱气象, 11(3):32-34.Zhen X J, Liu C, Zhao Y M, et al, 1993.Characteristics of cloud atlas of "5·5" severe black storm[J].J Arid Meteor, 11(3):32-34.
周旭, 张镭, 陈丽晶, 等, 2017.沙尘暴过程中沙尘气溶胶对气象场的影响[J].高原气象, 36(5):1422-1432.Zhou X, Zhang L, Chen L J, et al, 2017.Influence of the dust aerosols on meteorological fields during dust storm[J].Plateau Meteor, 36(5):1422-1432.DOI:10.7522/j.issn.1000-0534.2016.00110.
朱好, 张宏升, 2010.中国西北不同沙源地区起沙阈值的对比分析与研究[J].气象学报, 68(6):977-984.Zhu H, Zhang H S, 2010.An estimation of the threshold fricti8on velocities over the three different dust storm source areas in northwest China[J].Acta Meteor Sinica, 68(6):977-984.
[1] 李宏毅, 肖子牛, 朱玉祥. 藏东南草地下垫面地气通量交换日变化的数值模拟[J]. 高原气象, 2018, 37(2): 443-454.
[2] 于晓晶, 杜娟, 王敏仲, 徐洪雄, 何清. 青藏高原新增探空资料同化对南疆夏季降水预报的影响[J]. 高原气象, 2018, 37(1): 13-27.
[3] 杨启东, 凌彩云, 杜冰, 王丽娟, 杨扬. 粒子群算法在陆面过程模式参数优化中的应用研究[J]. 高原气象, 2017, 36(4): 1060-1071.
[4] 辜旭赞, 赵军, 唐永兰. 全球质量守恒准均匀经纬网格三次样条函数变换准拉格朗日积分方案与模拟个例[J]. 高原气象, 2017, 36(4): 1091-1105.
[5] 吴遥, 李跃清, 蒋兴文, 董元昌. WRF模拟青藏高原东南部极端旱涝年降水的参数敏感性研究[J]. 高原气象, 2017, 36(3): 619-631.
[6] 孙学金, 李岩, 张燕鸿, 宁辉, 唐敬, 文元宏, 苗青建. 基于WRF-LES的干旱湖区近地面风场模拟与敏感性研究[J]. 高原气象, 2017, 36(3): 835-844.
[7] 许威杰, 张耀存. 凝结潜热加热与对流反馈对一次高原低涡过程影响的数值模拟[J]. 高原气象, 2017, 36(3): 763-775.
[8] 谢志鹏, 胡泽勇, 刘火霖, 孙根厚, 杨耀先, 蔺筠, 黄芳芳. 陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J]. 高原气象, 2017, 36(1): 1-12.
[9] 王晓峰, 王平, 张蕾, 李佳, 许晓林. 多源观测在快速更新同化系统中的敏感性试验[J]. 高原气象, 2017, 36(1): 148-161.
[10] 陈贵川, 吴钲, 谌芸, 李强, 朱岩. 中低层增温对强降水中涡旋形成的敏感性研究[J]. 高原气象, 2016, 35(6): 1498-1511.
[11] 张宇, 陈德辉, 仲跻芹. 数值预报在青藏高原的不确定性对其下游预报的影响[J]. 高原气象, 2016, 35(6): 1430-1440.
[12] 汪栩加, 郑志海, 顾伯辉, 赵玉衡. BCC_CSM模式夏季长江中下游水汽输送评估[J]. 高原气象, 2016, 35(5): 1270-1279.
[13] 高峰, 吴统文, 辛晓歌. 系统误差订正方法在热带海温年代际试验中的应用研究[J]. 高原气象, 2016, 35(5): 1364-1375.
[14] 王蒙, 王振会, 王云, 董慧杰. 粒子边缘粘连对0℃层亮带雷达反射率因子的影响分析[J]. 高原气象, 2016, 35(5): 1401-1408.
[15] 丁治英, 王一颉, 刘瑞翔. 青藏高原一次MCC转MCV过程研究[J]. 高原气象, 2016, 35(3): 561-573.