利用常规观测和非常规监测资料从环流背景及发生条件等方面对比分析了2012年7月25-26日呼和浩特市连续两日出现的短时强降水天气。结果表明: (1)两次降水过程都是在东高西低的环境场产生, 西太平洋副热带高压与贝加尔湖低涡稳定维持, 使冷暖空气长时间交汇; (2)两次降水过程都是由中低纬系统、上下游系统、高低层系统以及多种尺度系统共同作用及配置产生的, 中小尺度天气系统是引起两次降水过程的主要原因, 但主要影响系统位置及产生因子的特征又有所不同; (3)前一次降水过程整层湿度条件好, 且整层均在暖区, 对流相对较弱; 后一次存在明显上干冷下暖湿的对流不稳定层结结构, 对流相对较强; (4)两次降水过程都是层状云和对流云混合降水, 但前一次降水过程层状云水平及垂直尺度相对较大, 后一次主要是对流云降水; (5)反射率因子、垂直累积液态水含量及对流高度分析降水过程, 前一次降水过程都比后一次弱, 前一次存在明显的低空急流, 反射率因子范围广、呈片状、东北移动并向南扩, 后一次反射率因子范围小、呈带状、东移南扩且明显存在列车效应; (6)受地形辐合抬升作用, 两次降水过程都发生在呼和浩特市中部及大青山南侧、蛮汉山西侧。
Short time strong precipitation that appears in Huhhot in continuous two days from 25 to 26 July 2012 was analyzed from circulation background and happening condition and etc by using conventional observation data and non-conventional materials.The results show that: (1) These two processes occur in the circulation of ‘high east and low west’. West Pacific subtropical high and Baikal low are stable maintained, which is favorable for the cold and warm air meets for a long time. (2) The joint action and configuration of the middle-low latitude weather system, the up-down stream system, high-low level and multi-scale system have contribute to this event, among these the meso-small scale system is the main reason of strong precipitation, but the location of main influence system and characteristics of producing factors are different. (3) The whole level humidity condition is better and located in warm region, but convection is relatively weak in the first day; in a while in the second day, convective instability stratification structure appears because of atmospheric stratification of dry and cold in the up and warm and humid in the low, so the convection is comparably strong. (4) These two days' strong precipitation is both the stratiform clouds and convective clouds induced comprehensive precipitation, but the horizontal and vertical scale of first event is larger; in a while convective precipitation happens mainly in the second. (5) From radar data, the reflectivity factor, vertical integrated liquid water content and echo top of the first day are weaker than the second day; there exists a low level jet seen from radical velocity chart; strong reflectivity area appears wide and flake shape can be seen from reflectivity factor, moves toward northeast and expand southward in the first day; while appears narrow range and band shape, moves eastward and expands southward, appears a obvious train effect in the second day. (6) These two days precipitation occurs in the central of Huhhot region which located in the south of Daqing mountain and in the west of Manhan Mountain, so the topography induced updraft motion plays critical role in the process.
[1]刘景涛, 罗孝逞. 内蒙古自治区天气预报手册(下册)[M]. 北京: 气象出版社, 1987.
[2]朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法(第四版)[M]. 北京: 气象出版社, 2007.
[3]慕建利, 李泽椿, 赵琳娜. “07.08”陕西关中短历时强暴雨水汽条件分析[J]. 高原气象, 2012, 31(4): 1042-1052.
[4]杨莲梅, 张云惠, 汤浩. 2007年7月新疆三次暴雨过程的水汽特征分析[J]. 高原气象, 2012, 31(4): 952-962.
[5]苗爱梅, 贾利冬, 李苗, 等. 2009年山西5次横切变暴雨的对比分析[J]. 气象, 2011, 37(8): 956-967.
[6]梁军, 李英, 隋洪起, 等. 两次大连春季暴雨的环流特征和诊断分析[J]. 高原气象, 2011, 30(5): 1243-1254.
[7]曹晓岗, 王慧, 邹兰军, 等. 上海“010805”特大暴雨与“080825”大暴雨对比分析[J]. 高原气象, 2011, 30(3): 739-748.
[8]赖绍钧, 何芬, 陈海山, 等. 华南前汛期福建一次致洪暴雨过程的中尺度结构特征[J]. 高原气象, 2012, 31(1): 167-175.
[9]盛日锋, 王俊, 龚佃利, 等. 济南“7.18”大暴雨中尺度分析[J]. 高原气象, 2011, 30(6): 1554-1565.
[10]袁美英, 李泽椿, 张小玲, 等. 中尺度对流系统与东北暴雨的关系[J]. 高原气象, 2011, 30(5): 1224-1231.
[11]王丽荣, 刘黎平, 王立荣, 等. 一次局地短时大暴雨的中-γ尺度分析[J]. 高原气象, 2011, 30(1): 217-225.
[12]池再香, 杜正静, 赵群剑, 等. 中尺度西南涡、切变线对“07.7”贵州西部暴雨影响的分析与模拟[J]. 高原气象, 2010, 29(4): 929-938.
[13]吴涛, 万玉发, 王珊珊. 多雷达反演参量联合的短时强降水识别方法研究[J]. 高原气象, 2012, 31(5): 1393-1406.
[14]孙莹, 王艳兰, 唐熠, 等. 短时暴雨天气雷达回波概念模型的建立[J]. 高原气象, 2011, 30(1): 235-244.
[15]周海光. 2008年8月1-2月滁州特大暴雨多普勒雷达三维风场反演试验的初步结果[J]. 高原气象, 2009, 28(6): 1422-1433.
[16]井喜, 李社宏, 屠妮妮, 等. 黄河中下游一次MCC和中-β尺度强对流云团相互作用暴雨过程综合分析[J]. 高原气象, 2011, 30(4): 913-928.
[17]井喜, 陈见, 胡春娟, 等. 广西和贵州MCC暴雨过程综合分析[J]. 高原气象, 2009, 28(2): 335-351.
[18]栾晨, 宋敏红, 蔡英, 等. 西北区西部夏半年强降水分布与变化特征[J]. 高原气象, 2012, 31(3): 629-637.
[19]李江萍, 杜亮亮, 张宇, 等. 玛曲地区夏季强降水的环流分型及水汽轨迹分析[J]. 高原气象, 2012, 31(6): 1582-1590.
[20]姜学恭, 李夏子, 李彰俊, 等. 一次阻塞型华北对流性暴雨过程的诊断分析和数值模拟[J]. 高原气象, 2012, 31(5): 1283-1293.
[21]赵桂香, 范卫东, 刘志斌, 等. “8.18-19”山西中南部暴雨天气特征分析[J]. 高原气象, 2012, 31(5): 1309-1319.
[22]李青春, 苗世光, 郑祚芳, 等. 北京局地暴雨过程中近地层辐合线的形成与作用[J]. 高原气象, 2011, 30(5): 1232-1242.
[23]李燕, 邹耀仁, 胡筱敏, 等. 辽东半岛一次大暴雨的中尺度模拟及物理结构分析[J]. 高原气象, 2009, 28(4): 915-923.
[24]段海霞, 李耀辉, 张强, 等. 西北区域几次暴雨过程中的自组织现象[J]. 高原气象, 2011, 30(4): 890-900.
[25]黄楚惠, 顾清源, 李国平, 等. 一次高原低涡东移引发四川盆地暴雨的机制分析[J]. 高原气象, 2010, 29(4): 832-839.
[26]赵玉春, 王叶红. 高原涡诱生西南涡特大暴雨成因的个例研究[J]. 高原气象, 2010, 29(4): 819-831.
[27]张云惠, 陈春艳, 杨莲梅, 等. 南疆西部一次罕见暴雨过程的成因分析[J]. 高原气象, 2013, 32(1): 191-200, doi: 10.7522/j.issn.1000-0534.2013.00019.
[28]刘勇, 徐娟娟, 李明娟, 等. 陕西中南部一次秋季连阴雨中区域性暴雨的成因分析[J]. 高原气象, 2013, 32(3): 739-749, doi: 10.7522/j.issn.1000-0534.2012.00069.
[29]何斌, 何锋, 范晓红, 等. 一次长江中下游梅雨锋暴雨过程的诊断分析[J]. 高原气象, 2013, 32(4): 1074-1083, doi: 10.7522/j.issn.1000-0534.2012.00101.
[30]李博, 刘黎平, 赵思雄, 等. 局地低矮地形对华南暴雨影响的数值试验[J]. 高原气象, 2013, 32(6): 1638-1650, doi: 10.7522/j.issn.1000-0534.2012.00156.
[31]李春筱, 董治宝, 徐永旺, 等. 内蒙古额济纳旗一次局地大到暴雨的成因分析[J]. 中国沙漠, 2011, 31(3): 774-779.
[32]俞小鼎, 周小刚, Lemon L, 等. 强对流天气临近预报[M]. 北京: 中国气象局培训中心, 2011.
[33]陶诗言等. 中国之暴雨[M]. 北京: 科学出版社, 1980.