论文

青藏高原MODIS地表反照率反演质量分析

  • 陈爱军 ,
  • 梁学伟 ,
  • 卞林根 ,
  • 刘玉洁
展开
  • 南京信息工程大学气象灾害教育部重点实验室, 南京 210044;2. 南京信息工程大学大气物理学院, 南京 210044;3. 中国气象科学研究院, 北京 100081;4. 国家卫星气象中心, 北京 100081

收稿日期: 2014-09-01

  网络出版日期: 2016-04-28

基金资助

国家自然科学基金项目(40875015)

Analysis on MODIS Albedo Retrieval Quality over the Qinghai-Xizang Plateau

  • CHEN Aijun ,
  • LIANG Xuewei ,
  • BIAN Lingen ,
  • LIU Yujie
Expand
  • Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China;3. Chinese Academy of Meteorology Science, Beijing 100081, China;4. National Satellite Meteorology Center, Beijing 100081, China

Received date: 2014-09-01

  Online published: 2016-04-28

摘要

为了更加全面地了解青藏高原MODIS地表反照率的反演质量,利用2003-2013年MODIS地表反照率数据MCD43B2统计分析了该产品在青藏高原的反演效率和反演质量。结果表明:(1)各周期的平均反演效率均超过80%,冬、夏季节的反演效率较低,春、秋季节则较高,最高可达90%以上;(2)所有反演结果中,高质量全反演结果的比例最高,且在春、秋季节较高,最高约为80%,而冬、夏季节较低,最低时略高于50%;(3)"无雪"状态反演结果的平均比例介于70%~95%,且以高质量全反演结果为主,而"积雪"状态反演结果的平均比例约为10%,且以当量反演结果为主。这些结果表明该产品可以为青藏高原绝大部分区域提供时空分布连续的高精度地表反照率,但冬、夏季节的反演效率和反演结果的精度,以及"积雪"状态下反演结果的精度,都还有待提高。

本文引用格式

陈爱军 , 梁学伟 , 卞林根 , 刘玉洁 . 青藏高原MODIS地表反照率反演质量分析[J]. 高原气象, 2016 , 35(2) : 277 -284 . DOI: 10.7522/j.issn.1000-0534.2015.00015

Abstract

For a comprehensive understanding of the retrieval quality of MODIS land surface albedo (LSA) product in the Qinghai-Xizang Plateau, it is statistically analyzed with MCD43B2, the retrieval quality data accompanied with the MODIS LSA, in this paper, and results are as following:(1) the mean retrieval effectiveness (MRE) in each retrieval period is above 80%. The MREs are low in winter and summer, while MREs are high to more than 90% in spring and autumn. (2) Among all LSAs, those with the best quality of full inversions (BQFI) have the highest percentage. The percentages of LSAs with the BQFI in spring and autumn are high and the highest one is nearly up to 80%. Meanwhile, the percentages of LSAs with the BQFI in winter and summer are low and the lowest one is a little more than 50%. (3) The mean percentage for snow-free LSAs is between 70% and 95%, and the snow-free LSAs are mainly those with the BQFI. However, the mean percentage for snow LSAs is about 10%, and the snow LSAs are mainly derived with the magnitude inversion. All above indicate that MODIS LSA product could provide spatio-temporal continuousness, high-accuracy LSA for most area of the Qinghai-Xizang Plateau, but the MREs and the accuracy in winter and summer, as well as the accuracy of the snow LSAs should be further improved in the future.

参考文献

[1]Blackmon M,Boville B,Bryan F,et al. 2001. The community climate system model[J]. Bull Amer Meteor Soc,82(11):2357-2376.
[2]Dai Y,Zeng X,Dickinson R E,et al. 2003. The common land model[J]. Bull Amer Meteor Soc,84(8):1013-1023.
[3]Dickinson R E,Kennedy P J,Henderson-Sellers A. 1993. Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model[M]. NationalCenter for Atmospheric Research,Climate and Global Dynamics Division.
[4]Dickinson R E. 1983. Land surface processes and climate-surface albedos and energy balance[J]. Adv Geophys,25:305-353.
[5]Henderson-Sellers A,Wilson M F. 1983. Surface albedo data for climatic modeling[J]. Rev Geophys,21(8):1743-1778.
[6]Jin Y,Schaaf C B,Gao F,et al. 2003a. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals:1. Algorithm performance[J]. J Geophys Res,108(D5),4158. DOI:10.1029/2002JD002803.
[7]Jin Y,Schaaf C B,Woodcock C E,et al. 2003b. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals:2. Validation[J]. J Geophys Res,108(D5),4159. DOI:10.1029/2002JD002804.
[8]Liu J,Schaaf C,Strahler A,et al. 2009. Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm:Dependence of albedo on solar zenith angle[J]. J Geophys Res,114 (D1),D01106. DOI:10.1029/2008JD00 9969.
[9]Román M O,Gatebe C K,Schaaf C B,et al. 2011. Variability in surface BRDF at different spatial scales (30m-500m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements[J]. Remote Sens Environ,115(9):2184-2203.
[10]Román M O,Gatebe C K,Shuai Y,et al. 2013. Use of in situ and airborne multi-angle data to assess MODIS-and Landsat-based estimates of directional reflectance and albedo[J]. IEEE Trans Geosci Remote Sens,51(3):1393-1404.
[11]Román M O,Schaaf C B,Woodcock C E,et al. 2009. The MODIS (Collection V005) BRDF/albedo product:Assessment of spatial representativeness over forested landscapes[J]. Remote Sens Environ,113(11):2476-2498.
[12]Schaaf C B,Gao F,Strahler A H,et al. 2002. First operational BRDF,albedo nadir reflectance products from MODIS[J]. Remote Sens Environ,83(1):135-148.
[13]Schaaf C B,Liu J,Gao F,et al. 2011. Aqua and Terra MODIS albedo and reflectance anisotropy products[M]//Land Remote Sensing and Global Environmental Change. Springer New York:549-561.
[14]Sellers P J,Meeson B W,Hall F G,et al. 1995. Remote sensing of the land surface for studies of global change:Models-algorithms-experiments[J]. Remote Sens Environ,51(1):3-26.
[15]Sellers P J,Randall D A,Collatz G J,et al. 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I:Model formulation[J]. J Climate,9(4):676-705.
[16]Stroeve J,Box J E,Gao F,et al. 2005. Accuracy assessment of the MODIS 16-day albedo product for snow:comparisons with Greenland in situ measurements[J]. Remote Sens Environ,94(1):46-60.
[17]Wang K,Liu J,Zhou X,et al. 2004. Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau[J]. J Geophys Res,109(D5),D05107. DOI:10.1029/2003JD004229.
[18]Wang K,Wang P,Liu J,et al. 2005. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau[J]. Bound-Layer Meteor,116(1):117-129.
[19]Wang Z,Schaaf C B,Chopping M J,et al. 2012. Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra[J]. Remote Sens Environ,117:264-280.
[20]Wang Z,Schaaf C B,Strahler A H,et al. 2014. Evaluation of MODIS albedo product (MCD43A) over grassland,agriculture and forest surface types during dormant and snow-covered periods[J]. Remote Sens Environ,140:60-77.
[21]Xu X,Lu C,Shi X,et al. 2008. World water tower:An atmospheric perspective[J]. Geophys Res Lett,35,L20815. DOI:10.1029/2008GL035867.
[22]Zhang R,Koike T,Xu X,et al. 2012. A China-Japan cooperative JICA atmospheric observing network over the Tibetan Plateau (JICA/Tibet Project):An overviews[J]. J Meteor Soc Japan,90C:1-16. DOI:10.2151/jmsj. 2012-C01.
[23]陈爱军,梁学伟,卞林根,等. 2012a. 青藏高原地区MODIS反照率的精度分析[J]. 大气科学学报,35(6):664-672. Chen Aijun,Liang Xuewei,Bian Lingen,et al. 2012a. Assessment on the accuracy of MODIS albedos over the Tibetan Plateau[J]. Trans Atmos Sci,35(6):664-672.
[24]陈爱军,王飞,卞林根,等. 2012b. 青藏高原地区MODIS反照率两种反演结果差异的对比分析[J]. 高原气象,31(6):1479-1487. Chen Aijun,Wang Fei,Bian Lingen,et al. 2012b. Study on difference between two kinds of MODIS albedo over the Qinghai-Xizang Plateau[J]. Plateau Meteor,31(6):1479-1487.
[25]陈爱军,刘玉洁,卞林根,等. 2012c. 中国地区MODIS反照率两种反演结果的比较[J]. 气象学报,70(5):1119-1127. Chen Aijun,Liu Yujie,Bian Lingen,et al. 2012c. Analysis of the differences the two kinds of MODIS albedos over China[J]. Acta Meteor Sinica,70(5):1119-1127.
[26]冯超,古松,赵亮,等. 2010. 青藏高原三江源区退化草地生态系统的地表反照率特征[J]. 高原气象,29(1):70-77. Feng Chao,Gu Song,Zhao Liang,et al. 2010. Albedo characteristics of degraded grassland ecosystem in the source region of three rivers in Qinghai-Tibetan Plateau[J]. Plateau Meteor,29(1):70-77.
[27]李英,胡泽勇. 2007. 藏北高原地表反照率的初步研究[J]. 高原气象,25(6):1034-1041. Li Ying,Hu Zeyong. 2007. A preliminary study on land-surface albedo in Northern Tibetan Plateau[J]. Plateau Meteor,25(6):1034-1041.
[28]李跃清,赵兴炳,邓波. 2010.2010年夏季西南涡加密观测科学试验[J]. 高原山地气象研究,30(4):80-84. Li Yueqing,Zhao Xingbing,Deng Bo. 2010. Intensive observation scientific experiment of the southwest vortex in the summer of 2010[J]. PlateauMountain Meteor Res,30(4):80-84.
[29]李跃清,赵兴炳,张利红,等. 2012.2011年夏季西南涡加密观测科学试验[J]. 高原山地气象研究,31(4):7-11. Li Yueqing,Zhao Xingbing,Zhang Lihong,et al. 2012. Intensive observation scientific experiment of the southwest vortex in the summer of 2011[J]. PlateauMountain Meteor Res,31(4):7-11.
[30]李跃清. 2011. 第三次青藏高原大气科学试验的观测基础[J]. 高原山地气象研究,31(3):77-82. Li Yueqing. 2011. The observational basis of the 3rd Tibetan Plateau atmospheric scientific experiment[J]. PlateauMountain Meteor Res,31(3):77-82.
[31]闵文彬,李跃清,周纪. 2015. 青藏高原东侧MODIS地表温度产品验证[J]. 高原气象,34(6):1511-1516. Min Wenbin,Li Yueqing,Zhou Ji. 2015. Validation of MODIS land surface temperature products in east of the Qinghai-Xizang Plateau[J]. Plateau Meteor,34(6):1511-1516. DOI:10.7522/j.issn. 1000-0534.2014.00082.
[32]《青藏高原气象科学实验文集》编辑组. 1984a. 青藏高原气象科学实验文集(一)[M]. 北京:科学出版社. Editorial team of Anthologies of Tibetan Plateau meteorological experiment. 1984a. Anthologies of Tibetan Plateau meteorological experiment (1)[M]. Beijing:Science Press.
[33]《青藏高原气象科学实验文集》编辑组. 1984b. 青藏高原气象科学实验文集(二)[M]. 北京:科学出版社. Editorial team of Anthologies of Tibetan Plateau meteorological experiment. 1984b. Anthologies of Tibetan Plateau meteorological experiment (2)[M]. Beijing:Science Press.
[34]《青藏高原气象科学实验文集》编辑组. 1987. 青藏高原气象科学实验文集(三)[M]. 北京:科学出版社. Editorial team of Anthologies of Tibetan Plateau meteorological experiment. 1987. Anthologies of Tibetan Plateau meteorological experiment (3)[M]. Beijing:Science Press.
[35]陶诗言,陈联寿,徐祥德,等. 1999. 第二次青藏高原大气科学试验理论研究进展(一)、(二)、(三)[M]. 北京:气象出版社. Tao Shiyan,Chen Lianshou,Xu Xiangde,et al. 1999. The theoretical research progress of 2nd atmospheric science experiment on Tibetan Plateau (1-3)[M]. Beijing:Science Press.
[36]徐安伦,李建,孙绩华,等. 2013. 青藏高原东南缘大理地区近地层微气象特征及能量交换分析[J]. 高原气象,32(1):9-22. Xu Anlun,Li Jian,Sun Jihua,et al. 2013. Analyses on micrometeorology characteristic and energy exchange in surface layer in Dali region of the southeastern margin of Tibetan Plateau[J]. Plateau Meteor,32(1):9-22. DOI:10.7522/j.issn. 1000-0534.2013.00002.
[37]徐祥德. 2009. 青藏高原"敏感区"对我国灾害天气气候的影响及其监测[J]. 中国工程科学,11(10):96-107. Xu Xiangde. 2009. The effects of sensitive region over Tibetan Plateau on disastrous weather and climate and its monitoring[J]. Eng Sci,11(10):96-107.
[38]叶笃正,高由禧. 1979. 青藏高原气象学[M]. 北京:科学出版社:7-9. Ye Duzheng,Gao Youxi. 1979. Meteorology of the Qinghai-Xizang Plateau[M]. Beijing:Science Press:7-9.
[39]余予,陈洪滨,夏祥鳌,等. 2010. 青藏高原纳木错站地表反照率观测与MODIS资料的对比分析[J]. 高原气象,29(2):260-267. Yu Yu,Chen Hongbin,Xia Xiangao,et al. 2010. Comparison of surface albedo measurement with MODIS product at Namco station of Tibetan Plateau[J]. Plateau Meteor,29(2):260-267.
[40]张人禾,徐祥德. 2012. 青藏高原及东缘新一代大气综合探测系统应用平台——中日合作JICA项目[J]. 中国工程科学,14(9):102-112. Zhang Renhe,Xu Xiangde. 2012. An applying platform for the new generation of the comprehensive atmospheric observing system over the Tibetan Plateau and its eastern region-a China-Japan cooperative JICA Project[J]. Eng Sci,14(9):102-112.
[41]章基嘉,朱抱真,朱福康,等. 1988. 青藏高原气象学进展[M]. 北京:科学出版社,14-89. Zhang Jijia,Zhu Baozhen,Zhu Kangfu,et al. 1988. Advances in meteorology of the Qinghai-Xizang Plateau[M]. Beijing:Science Press,14-89.
[42]周长艳,张虹娇,赵兴炳,等. 2012. 近三十多年青藏高原大气科学试验观测布局综述[J]. 高原山地气象研究,32(1):81-87. Zhou Changyan,Zhang Hongjiao,Zhao Xingbing,et al. 2012. Overview of the observation network of the main Tibetan Plateau experiments of atmospheric sciences in recent decades[J]. PlateauMountain Meteor Res,32(1):81-87.
[43]朱志鹍,马耀明,胡泽勇,等. 2015. 青藏高原那曲高寒草甸生态系统CO<sub>2</sub>净交换及其影响因子[J]. 高原气象,34(5):1217-1223. Zhu Zhikun,Ma Yaoming,Hu Zeyong,et al. Net ecosystem carbon dioxide exchange in Alpine meadow of Nagchu region over Qinghai-Xizang Plateau[J]. Plateau Meteor,34(5):1217-1223. DOI:10.7522/j.issn. 1000-0534.2014.00135.
文章导航

/