论文

基于CERA-20C资料青藏高原边界层高度日变化气候特征分析

  • 王倩茹 ,
  • 范广洲 ,
  • 葛非 ,
  • 程译萱 ,
  • 朱伊
展开
  • 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室/气候与环境变化联合实验室, 四川 成都 610225;中国民用航空飞行学院, 四川 广汉 618307

收稿日期: 2017-11-30

  网络出版日期: 2018-12-28

基金资助

国家自然科学基金项目(91537214,41775072,41505078);公益性行业(气象)科研专项(GYHY201506001);四川省教育厅重点项目(16ZA0203);成都信息工程大学中青年学术带头人科研基金项目(J201516,J201518,J201711);成都信息工程大学校引进人才启动基金项目(KYTZ201639)

Climatic Characteristics of the Diurnal Variation Boundary Layer Height over the Qinghai-Tibetan Plateau Based on CERA-20C

  • WANG Qianru ,
  • FAN Guangzhou ,
  • GE Fei ,
  • CHENG Yixuan ,
  • ZHU Yi
Expand
  • School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;Civil Aviation Flight University of China, Guanghan 618307, Sichuan, China

Received date: 2017-11-30

  Online published: 2018-12-28

摘要

基于1981-2010年CERA-20C全球大气边界层高度(Boundary layer height,BLH)再分析资料对青藏高原边界层高度的日变化特征,包括日变化的季节变化、年代变化与年际变化进行研究。结果表明:BLH大值区在海拔大于5 000 m地区以及沙漠干旱地区,其中尼玛等地为边界层高度大值区的扩散源地。03:00(世界时,下同)-06:00 BLH增加最剧烈,增幅达948.67 m·(3h)-1;09:00-12:00降低最剧烈,降幅达760.02 m·(3h)-1,09:00为最大值,晚于非高原地区(06:00),30年平均最大值可达1 982.764 m,日变化最大值可达2 901.21 m,昼高夜低。BLH最大值在春季为最大、夏季最小,BLH最小值在夏季最大、秋季最小。高原西坡BLH在春秋季最大,腹地在冬季最大,东坡BLH低,变化幅度小。03:00 BLH逐月变化趋势为单峰变化特征。BLH除夏季年际变化平稳变化以外,春、秋、冬三季在20世纪80年代中期,20世纪90年代末与21世纪初均存在较大波动。冬季边界层高度近30年逐渐增加,特别是在21世纪初的大幅持续增加值得重视。春季高原腹地处于积雪融化时期,积雪融化带走地表热量,促使春季地表气温更低,边界层高度春季与地表气温呈负相关,同时夏季相对湿度为波状分布,相对湿度梯度最小值与边界层顶相对应,边界层高度在春季比夏季更高。边界层高度发展最高时,高原边界层内通常为上升运动与下沉运动交替,为边界层发展提供一定的动力条件。

本文引用格式

王倩茹 , 范广洲 , 葛非 , 程译萱 , 朱伊 . 基于CERA-20C资料青藏高原边界层高度日变化气候特征分析[J]. 高原气象, 2018 , 37(6) : 1486 -1498 . DOI: 10.7522/j.issn.1000-0534.2018.00042

Abstract

Based on the CERA-20C global atmospheric boundary layer height (BLH) reanalysis data from 1981 to 2010, this paper focused on the diurnal variation characteristics of the BLH data, including seasonal variation, chronological change and interannual variation of the Qinghai-Tibetan Plateau. The statistic showed that the BLH large value areas include areas above 5 000 m and some desert areas, Nyima is the source of the high-value area in boundary layer. BLH increases most dramatic from 03:00 (UTC, the same as after) to 06:00 and decreases from 09:00 to 12:00, the increase of the BLH can reach 948.67 m·(3h)-1 with a decrease of 760.02 m·(3h)-1, and reaching to the maximum value at 09:00. This is a bit later than the non-plateau area whose maximum time is 06:00. The average maximum value during thirty years can reach to 1982.764 m, and the maximum daily variation is up to 2901.21 m, both manifesting a high volume during the day and low volume at night. The maximum value of BLH is the largest in spring while the smallest in summer, but the minimum of BLH lies in summer and the smallest in autumn. The BLH of Plateau West Slope reaches a maximum in spring and autumn, but in hinterland it's in winter. The BLH of Plateau East Slope is quite low and steady. At 03:00, the BLH changed monthly in a single peak characteristic. In addition to the steady change of inter-annual variability in spring, autumn and winter, the BHL of these three seasons all feature great fluctuation in the mid of 1980s, late 1990s and early 21st century. The BLH in winter has gradually increased in the past 30 years, especially in the early 21st century. In spring, the plateau hinterland of the Qinghai-Tibetan plateau above 5 000 m is in snow melting period, and the snow takes away the surface heat, making the surface temperature lower in spring. The BLH in spring is negatively correlated with the surface temperature, at the same time, the summer relative humidity is wavy distribution, and the minimum relative humidity gradient corresponds to the top of the boundary layer, and the height of boundary layer is higher in spring than in summer. When the boundary layer is highly developed, the elevation boundary and the subsidence movement are usually alternately in the plateau boundary layer, which provides some dynamic conditions for the development of the boundary layer.

参考文献

[1]Amaya D J, Xie S P, Miller A J, et al, 2015. Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus[J]. J Geophys Res Ocean, 120(10):6782-6798. DOI:10.1002/2015JC010906.
[2]An W, Hou S, Hu Y, et al, 2017. Delayed warming hiatus over the Tibetan Plateau[J]. Earth Space Sci, 4(3):128-137. DOI:10.1002/2016EA000179.
[3]Ao C O, Waliser D E, Chan S K, et al, 2012. Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles[J]. J Geophysl Res Atmos, 117(D16):16117. DOI:10.1029/2012JD017598.
[4]Bachtiar V S, Davies F, Danson F M, 2014. A combined model for improving estimation of atmospheric boundary layer height[J]. Atmospheric Environment, 98(98):461-473. DOI:10.1016/j.atmosenv. 2014.09.028.
[5]Baklanov A A, Grisogono B, Bornstein R, et al, 2011. The nature, theory, and modeling of atmospheric planetary boundary layers[J]. Bull Amer Meteor Soc, 92(2):123-128. DOI:10.1175/2010BAMS2797.1.
[6]Cai D, You Q, Fraedrich K, et al, 2017. Spatiotemporal temperature variability over the Tibetan Plateau:Altitudinal dependence associated with the global warming hiatus[J]. J Climate, 30(3):696-684. DOI:10.1175/JCLI-D-16-0343.1.
[7]Chen X, 2013a. The plateau scale land-air interaction and its connections to troposphere and lower stratosphere[D]. PhD Thesis, ITC Dissertation 237, Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede, The Netherlands.
[8]Chen X, ?kerlak, Bojan, et al, 2016. Reasons for the extremely high-ranging planetary boundary layer over the western Tibetan Plateau in winter[J]. J Atmos Sci, 73(5):2021-2038. DOI:10.1175/JAS-D-15-0148.1.
[9]Chen X, A?el J A, Su Z, et al, 2013b. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J]. Plos One, 8(2):e56909. DOI:10.1371/journal.pone. 0056909.
[10]Compton J C, Delgado R, Berkoff T A, et al, 2013. Determination of planetary boundary layer height on short spatial and temporal scales:A demonstration of the covariance wavelet transform in ground-based wind profiler and lidar measurements[J]. J Atmos Ocean Technol, 30(7):1566-1575.
[11]Engeln A V, Teixeira J, 2013. A planetary boundary layer height climatology derived from ECMWF reanalysis data[J]. J Climate, 26(17):6575-6590. DOI:10.1175/JCLI-D-12-00385.1.
[12]England M H, Mcgregor S, Spence P, et al, 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus[J]. Nature Climate Change, 4(3):222-227. DOI:10.1038/nclimate2106.
[13]Fan S J, Fan Q, Yu W, et al, 2011. Atmospheric boundary layer characteristics over the Pearl River Delta, China, during the summer of 2006:measurement and model results[J]. Atmospheric Chemistry & Physics, 11(13):681-687. DOI:10.5194/acp-11-6297-2011.
[14]Feng X, Haines K, 2017. Uncertainties and coupled error covariances in the CERA-20C, ECMWF's first coupled reanalysis ensemble[C]//EGU General Assembly Conference. EGU General Assembly Conference Abstracts.
[15]Guo J, Miao Y, Zhang Y, et al, 2016. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data[J]. Atmospheric Chemistry & Physics, 16 (20):13309-13319. DOI:10.5194/acp-2016-564.
[16]Kosaka Y, Xie S P, 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 501(7467):403-407. DOI:10.1038/nature12534.
[17]Laloyaux P, Balmaseda M, Dee D, et al, 2016. A coupled data assimilation system for climate reanalysis[J]. QuartJ Roy Meteor Soc, 142(694):65-78. DOI:10.1002/qj. 2629.
[18]Laloyaux P E, de Boisséson Y P, Dahlgren, 2017. CERA-20C: An Earth system approach to climate reanalysis[M/OL]. ECMWF Newsletter No. 150, 25-30.
[19]Leventidou E, Zanis P, Balis D, et al, 2013. Factors affecting the comparisons of planetary boundary layer height retrievals from CALIPSO, ECMWF and radiosondes over Thessaloniki, Greece[J]. Atmos Environ, 74:360-366. DOI:10.1016/j.atmosenv. 2013.04.007.
[20]Li Y, Gao W, 2007, Atmospheric Boundary Layer Circulation on the Eastern Edge of the Tibetan Plateau, China, in Summer[J]. Arctic Antarctic & Alpine Research, 39(4):708-713. DOI:10.1657/1523-0430(07-504)[LI]2.0.CO;2.
[21]Ma Y, Wang Y, Wu R, et al, 2009. Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau[J]. Hydrol Earth Sys Sci, 13(6):1103-1111. DOI:10.5194/hess-13-1103-2009.
[22]Penny S G, Hamill T M, 2017. Coupled data assimilation for integrated earth system analysis and prediction[J]. Bull Amer Meteor Soc, 98(7):169-172. DOI:10.1175/BAMS-D-17-0036.1.
[23]Seidel D J, Ao C O, Li K, 2010. Estimating climatological planetary boundary layer heights from radiosonde observations:Comparison of methods and uncertainty analysis[J]. J Geophys Res, 115(D16):751-763. DOI:10.1029/2009JD013680.
[24]Sun F, Ma Y, Li M, et al, 2007. Boundary layer effects above a Himalayan valley near Mount Everest[J]. Geophys Res Lett, 34(8):L08808. DOI:10.1029/2007gl029484.
[25]S?rensen J H, Rasmussen A, Svensmark H, 1996. Forecast of atmospheric boundary-layer height utilised for ETEX real-time dispersion modelling[J]. Phys Chem Earth, 21(5/6):435-439. DOI:10.1016/S0079-1946(97)81138-X.
[26]Ueno K, Sugimoto S, Tsutsui H, et al, 2012. Role of patchy snow cover on the planetary boundary layer structure during late winter observed in the central Tibetan Plateau[J]. J Meteor Soc Japan, 90:145-155. DOI:10.2151/jmsj. 2012-C10.
[27]Whiteman C D, Zhong S, Bian X, et al, 2000. Boundary layer evolution and regional-scale diurnal circulations over the and Mexican plateau[J]. J Geophys Res, 105(D8):10081-10102. DOI:10.1029/2000JD900039.
[28]Yanai M, Li C, 1994. Mechanism of heating and the boundary layer over the Tibetan Plateau[J]. Mon Wea Rev, 122(2):305-323. DOI:10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2.
[29]Yang K, Koike T, Fujii H, et al, 2004. The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau:observations and simulations (regional climate modeling for monsoon system)[J]. J Meteor Soc Japan, 82(6):1777-1792. DOI:10.2151/jmsj. 82.1777.
[30]Zhang N, Yi C, Branson M, et al, 2008. Evaluation of modeled atmospheric boundary layer depth at the WLEF tower[J]. Agricultural & Forest Meteorology. 148(2):206-215. DOI:10.1016/j.agrformet. 2007.08.012
[31]Zhang Y, Gao Z, Li D, et al, 2014. On the computation of planetary boundary layer height using the bulk Richardson number method[J]. Geoscientific Model Development Discussions, 7(3):4045-4079. DOI:10.5194/gmd-7-2599-2014.
[32]Zhang Y, Seidel D J, Zhang S, 2013. Trends in planetary boundary layer height over Europe[J]. J Climate, 26(24):10071-10076. DOI:10.1175/JCLI-D-13-00108.1.
[33]Zuo H, Yinqiao H U, Li D, et al, 2005. Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau[J]. Progress in Natural Science (Materials International), 15(3):239-245. DOI:10.1080/10020070512331342050.
[34]Li M S, Dai Y X, Ma Y M, et al, 2006. Analysis on structure of atmospheric boundary layer and energy exchange of surface layer over Mount Qomolangma region[J]. Plateau Meteor, 25(5):807-813.<br/>李茂善, 戴有学, 马耀明, 等, 2006.珠峰地区大气边界层结构及近地层能量交换分析[J].高原气象, 25(5):807-813.
[35]Li Z G, Lü S H, Wen L J, et al, 2016. Influence of incursion of dry cold air on atmospheric boundary layer process in Ngoring Lake Basin[J]. Plateau Meteor, 35(5):1200-1211. DOI:10.7522/j.issn. 1000-0534.2015.00076.<br/>李照国, 吕世华, 文莉娟, 等, 2016.一次干冷空气过境对鄂陵湖地区大气边界层过程的影响[J].高原气象, 35(5):1200-1211.
[36]Wang X Z, Hu B H, Li Y Y, 2011. An analysis of planetary boundary layer depth climatic features based on ERA 40 dataset[J]. J Meteor Sci, 31(3):339-346. DOI:10.3969/j.issn. 1009-0827.2011.03.014.<br/>王学忠, 胡邦辉, 李昀英, 2011.基于ERA40资料的边界层厚度气候特征分析[J].气象科学, 31(3):339-346.
[37]Wan Y X, Zhang Y, Zhang J W, et al, 2017. Influence of sensible heat on planetary boundary layer height in East Asia[J]. Plateau Meteor, 36(1):173-182. DOI:10.7522/j.issn. 1000-0534.2016.00001.<br/>万云霞, 张宇, 张瑾文, 等, 2017.感热变化对东亚地区大气边界层高度的影响[J].高原气象, 36(1):173-182.
[38]Zhao C L, Lü S H, Han B, et al, 2016. Relationship between the convective boundary layer and residual layer over Badain Jaran Desert in summer[J]. Plateau Meteor, 35(4):1004-1014. DOI:10.7522/j.issn. 1000-0534.2015.00080.<br/>赵采玲, 吕世华, 韩博, 等, 2016.夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究[J].高原气象, 35(4):1004-1014.
[39]Zhao Y R, Zhang K Q, Mao W Q, et al, 2017. Boundary layer height's variation characteristics research of arid and semiarid areas over East Asia and North Africa in recent 100 years[J]. Plateau Meteor, 36(5):1304-1314. DOI:10.7522/j.issn. 1000-0534.2016.00107.<br/>赵艳茹, 张珂铨, 毛文茜, 等, 2017.100年来东亚和北非干旱半干旱区边界层高度的变化特征研究[J].高原气象, 36(5):1304-1314.
[40]Zhuo G, Xu X D, Chen L S, 2002. Dynamical effect of boundary layer characteristics of Tibetan Plateau on general circulation[J]. J Appl Meteor, 13(2):163-169. DOI:10.3969/j.issn. 1001-7313.2002.02.004.<br/>卓嘎, 徐祥德, 陈联寿, 2002.青藏高原边界层高度特征对大气环流动力学效应的数值试验[J].应用气象学报, 13(2):163-169.
文章导航

/