[1]Amaya D J, Xie S P, Miller A J, et al, 2015. Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus[J]. J Geophys Res Ocean, 120(10):6782-6798. DOI:10.1002/2015JC010906.
[2]An W, Hou S, Hu Y, et al, 2017. Delayed warming hiatus over the Tibetan Plateau[J]. Earth Space Sci, 4(3):128-137. DOI:10.1002/2016EA000179.
[3]Ao C O, Waliser D E, Chan S K, et al, 2012. Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles[J]. J Geophysl Res Atmos, 117(D16):16117. DOI:10.1029/2012JD017598.
[4]Bachtiar V S, Davies F, Danson F M, 2014. A combined model for improving estimation of atmospheric boundary layer height[J]. Atmospheric Environment, 98(98):461-473. DOI:10.1016/j.atmosenv. 2014.09.028.
[5]Baklanov A A, Grisogono B, Bornstein R, et al, 2011. The nature, theory, and modeling of atmospheric planetary boundary layers[J]. Bull Amer Meteor Soc, 92(2):123-128. DOI:10.1175/2010BAMS2797.1.
[6]Cai D, You Q, Fraedrich K, et al, 2017. Spatiotemporal temperature variability over the Tibetan Plateau:Altitudinal dependence associated with the global warming hiatus[J]. J Climate, 30(3):696-684. DOI:10.1175/JCLI-D-16-0343.1.
[7]Chen X, 2013a. The plateau scale land-air interaction and its connections to troposphere and lower stratosphere[D]. PhD Thesis, ITC Dissertation 237, Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede, The Netherlands.
[8]Chen X, ?kerlak, Bojan, et al, 2016. Reasons for the extremely high-ranging planetary boundary layer over the western Tibetan Plateau in winter[J]. J Atmos Sci, 73(5):2021-2038. DOI:10.1175/JAS-D-15-0148.1.
[9]Chen X, A?el J A, Su Z, et al, 2013b. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J]. Plos One, 8(2):e56909. DOI:10.1371/journal.pone. 0056909.
[10]Compton J C, Delgado R, Berkoff T A, et al, 2013. Determination of planetary boundary layer height on short spatial and temporal scales:A demonstration of the covariance wavelet transform in ground-based wind profiler and lidar measurements[J]. J Atmos Ocean Technol, 30(7):1566-1575.
[11]Engeln A V, Teixeira J, 2013. A planetary boundary layer height climatology derived from ECMWF reanalysis data[J]. J Climate, 26(17):6575-6590. DOI:10.1175/JCLI-D-12-00385.1.
[12]England M H, Mcgregor S, Spence P, et al, 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus[J]. Nature Climate Change, 4(3):222-227. DOI:10.1038/nclimate2106.
[13]Fan S J, Fan Q, Yu W, et al, 2011. Atmospheric boundary layer characteristics over the Pearl River Delta, China, during the summer of 2006:measurement and model results[J]. Atmospheric Chemistry & Physics, 11(13):681-687. DOI:10.5194/acp-11-6297-2011.
[14]Feng X, Haines K, 2017. Uncertainties and coupled error covariances in the CERA-20C, ECMWF's first coupled reanalysis ensemble[C]//EGU General Assembly Conference. EGU General Assembly Conference Abstracts.
[15]Guo J, Miao Y, Zhang Y, et al, 2016. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data[J]. Atmospheric Chemistry & Physics, 16 (20):13309-13319. DOI:10.5194/acp-2016-564.
[16]Kosaka Y, Xie S P, 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 501(7467):403-407. DOI:10.1038/nature12534.
[17]Laloyaux P, Balmaseda M, Dee D, et al, 2016. A coupled data assimilation system for climate reanalysis[J]. QuartJ Roy Meteor Soc, 142(694):65-78. DOI:10.1002/qj. 2629.
[18]Laloyaux P E, de Boisséson Y P, Dahlgren, 2017. CERA-20C: An Earth system approach to climate reanalysis[M/OL]. ECMWF Newsletter No. 150, 25-30.
[19]Leventidou E, Zanis P, Balis D, et al, 2013. Factors affecting the comparisons of planetary boundary layer height retrievals from CALIPSO, ECMWF and radiosondes over Thessaloniki, Greece[J]. Atmos Environ, 74:360-366. DOI:10.1016/j.atmosenv. 2013.04.007.
[20]Li Y, Gao W, 2007, Atmospheric Boundary Layer Circulation on the Eastern Edge of the Tibetan Plateau, China, in Summer[J]. Arctic Antarctic & Alpine Research, 39(4):708-713. DOI:10.1657/1523-0430(07-504)[LI]2.0.CO;2.
[21]Ma Y, Wang Y, Wu R, et al, 2009. Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau[J]. Hydrol Earth Sys Sci, 13(6):1103-1111. DOI:10.5194/hess-13-1103-2009.
[22]Penny S G, Hamill T M, 2017. Coupled data assimilation for integrated earth system analysis and prediction[J]. Bull Amer Meteor Soc, 98(7):169-172. DOI:10.1175/BAMS-D-17-0036.1.
[23]Seidel D J, Ao C O, Li K, 2010. Estimating climatological planetary boundary layer heights from radiosonde observations:Comparison of methods and uncertainty analysis[J]. J Geophys Res, 115(D16):751-763. DOI:10.1029/2009JD013680.
[24]Sun F, Ma Y, Li M, et al, 2007. Boundary layer effects above a Himalayan valley near Mount Everest[J]. Geophys Res Lett, 34(8):L08808. DOI:10.1029/2007gl029484.
[25]S?rensen J H, Rasmussen A, Svensmark H, 1996. Forecast of atmospheric boundary-layer height utilised for ETEX real-time dispersion modelling[J]. Phys Chem Earth, 21(5/6):435-439. DOI:10.1016/S0079-1946(97)81138-X.
[26]Ueno K, Sugimoto S, Tsutsui H, et al, 2012. Role of patchy snow cover on the planetary boundary layer structure during late winter observed in the central Tibetan Plateau[J]. J Meteor Soc Japan, 90:145-155. DOI:10.2151/jmsj. 2012-C10.
[27]Whiteman C D, Zhong S, Bian X, et al, 2000. Boundary layer evolution and regional-scale diurnal circulations over the and Mexican plateau[J]. J Geophys Res, 105(D8):10081-10102. DOI:10.1029/2000JD900039.
[28]Yanai M, Li C, 1994. Mechanism of heating and the boundary layer over the Tibetan Plateau[J]. Mon Wea Rev, 122(2):305-323. DOI:10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2.
[29]Yang K, Koike T, Fujii H, et al, 2004. The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau:observations and simulations (regional climate modeling for monsoon system)[J]. J Meteor Soc Japan, 82(6):1777-1792. DOI:10.2151/jmsj. 82.1777.
[30]Zhang N, Yi C, Branson M, et al, 2008. Evaluation of modeled atmospheric boundary layer depth at the WLEF tower[J]. Agricultural & Forest Meteorology. 148(2):206-215. DOI:10.1016/j.agrformet. 2007.08.012
[31]Zhang Y, Gao Z, Li D, et al, 2014. On the computation of planetary boundary layer height using the bulk Richardson number method[J]. Geoscientific Model Development Discussions, 7(3):4045-4079. DOI:10.5194/gmd-7-2599-2014.
[32]Zhang Y, Seidel D J, Zhang S, 2013. Trends in planetary boundary layer height over Europe[J]. J Climate, 26(24):10071-10076. DOI:10.1175/JCLI-D-13-00108.1.
[33]Zuo H, Yinqiao H U, Li D, et al, 2005. Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau[J]. Progress in Natural Science (Materials International), 15(3):239-245. DOI:10.1080/10020070512331342050.
[34]Li M S, Dai Y X, Ma Y M, et al, 2006. Analysis on structure of atmospheric boundary layer and energy exchange of surface layer over Mount Qomolangma region[J]. Plateau Meteor, 25(5):807-813.<br/>李茂善, 戴有学, 马耀明, 等, 2006.珠峰地区大气边界层结构及近地层能量交换分析[J].高原气象, 25(5):807-813.
[35]Li Z G, Lü S H, Wen L J, et al, 2016. Influence of incursion of dry cold air on atmospheric boundary layer process in Ngoring Lake Basin[J]. Plateau Meteor, 35(5):1200-1211. DOI:10.7522/j.issn. 1000-0534.2015.00076.<br/>李照国, 吕世华, 文莉娟, 等, 2016.一次干冷空气过境对鄂陵湖地区大气边界层过程的影响[J].高原气象, 35(5):1200-1211.
[36]Wang X Z, Hu B H, Li Y Y, 2011. An analysis of planetary boundary layer depth climatic features based on ERA 40 dataset[J]. J Meteor Sci, 31(3):339-346. DOI:10.3969/j.issn. 1009-0827.2011.03.014.<br/>王学忠, 胡邦辉, 李昀英, 2011.基于ERA40资料的边界层厚度气候特征分析[J].气象科学, 31(3):339-346.
[37]Wan Y X, Zhang Y, Zhang J W, et al, 2017. Influence of sensible heat on planetary boundary layer height in East Asia[J]. Plateau Meteor, 36(1):173-182. DOI:10.7522/j.issn. 1000-0534.2016.00001.<br/>万云霞, 张宇, 张瑾文, 等, 2017.感热变化对东亚地区大气边界层高度的影响[J].高原气象, 36(1):173-182.
[38]Zhao C L, Lü S H, Han B, et al, 2016. Relationship between the convective boundary layer and residual layer over Badain Jaran Desert in summer[J]. Plateau Meteor, 35(4):1004-1014. DOI:10.7522/j.issn. 1000-0534.2015.00080.<br/>赵采玲, 吕世华, 韩博, 等, 2016.夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究[J].高原气象, 35(4):1004-1014.
[39]Zhao Y R, Zhang K Q, Mao W Q, et al, 2017. Boundary layer height's variation characteristics research of arid and semiarid areas over East Asia and North Africa in recent 100 years[J]. Plateau Meteor, 36(5):1304-1314. DOI:10.7522/j.issn. 1000-0534.2016.00107.<br/>赵艳茹, 张珂铨, 毛文茜, 等, 2017.100年来东亚和北非干旱半干旱区边界层高度的变化特征研究[J].高原气象, 36(5):1304-1314.
[40]Zhuo G, Xu X D, Chen L S, 2002. Dynamical effect of boundary layer characteristics of Tibetan Plateau on general circulation[J]. J Appl Meteor, 13(2):163-169. DOI:10.3969/j.issn. 1001-7313.2002.02.004.<br/>卓嘎, 徐祥德, 陈联寿, 2002.青藏高原边界层高度特征对大气环流动力学效应的数值试验[J].应用气象学报, 13(2):163-169.