论文

一次伴有高原低涡和热带气旋活动的持续性暴雨过程分析

  • 何光碧 ,
  • 肖玉华 ,
  • 师锐
展开
  • 中国气象局成都高原气象研究所/高原与盆地暴雨旱涝灾害四川省重点实验室, 四川 成都 610072;四川省气象台, 四川 成都 610072

收稿日期: 2018-06-29

  网络出版日期: 2019-10-28

基金资助

国家自然科学基金项目(91337215,40775032);国家重点基础研究发展计划(973)项目(2012CB417202)

Analysis of a Sustained Rainstorm Accompanied by a Plateau Vortex and a Tropical Cyclone

  • HE Guangbi ,
  • XIAO Yuhua ,
  • SHI Rui
Expand
  • Institute of Plateau Meteorology, Chengdu, China Meteorological Administration/Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, Sichuan, China;Sichuan Provincial Meteorological Observatory, China Meteorological Administration, Chengdu 610072, Sichuan, China

Received date: 2018-06-29

  Online published: 2019-10-28

摘要

为了进一步考察持续性暴雨发生机制,针对2010年7月下旬川、陕、甘地区的一次持续暴雨过程,应用MICAPS资料,FY-2E辐射亮温资料,TRMM卫星降水资料,NCEP每6 h 1°×1°分辨率的分析资料,主要分析了暴雨发生的环流背景,暴雨直接影响系统-高原低涡、热带气旋、中尺度对流系统、冷暖平流等对持续性暴雨的影响。结果表明:(1)本次持续性暴雨过程发生在对流层高层南亚高压由纬向型转为经向型,对流层中层副热带高压东退西进,热带气旋登陆西行,高原低涡东移受阻,中尺度对流系统不断生消的有利条件下。(2)高原低涡与热带气旋相互作用使两者移速减缓,涡区切变流场加强,正涡度平流输送使低涡加强与维持。(3)低涡为暴雨发生提供了有利的抬升条件,使降水期间涡区呈现较强的正涡度和辐合上升运动,降水最大值出现时间对应辐合上升运动最强时,降水过程中对流层中低层为垂直正螺旋度,有利于低涡系统维持和降水持续,垂直正螺旋度大值区及出现时间对强降水发生及落区有一定的指示性。(4)对流层低层暖平流输送使暴雨区能量持续积累,同时也使暴雨区中尺度对流系统生肖不断,降水得以发生和持续。

本文引用格式

何光碧 , 肖玉华 , 师锐 . 一次伴有高原低涡和热带气旋活动的持续性暴雨过程分析[J]. 高原气象, 2019 , 38(5) : 1004 -1016 . DOI: 10.7522/j.issn.1000-0534.2018.00131

Abstract

In order to further investigate the mechanism associated with a sustained rainstorm process occurred in Sichuan, Shanxi and Gansu province in late July 2010, analysis were conducted on the circumfluence background and the directly related weather systems, e. g., the plateau vortex, the tropical cyclone, the mesoscale convective and the warm/cold advection together with their interactions. The data used in this study includes MICAPS data, FY-23 radiation brightness temperature, TRMM satellite rainfall product, and NCEP Reanalysis dataset (1°×1°, 6 hours). The results show that:(1) The sustained rainstorm process occurred under favorable conditions when the South Asia High in the upper troposphere changed from a zonal pattern to a meridional pattern, the subtropical high in the middle troposphere shifted from east to west, the landed tropical cyclone moved to the west, the plateau vortex was blocked on the east and the mesoscale convection systems kept reoccurring. (2)The interaction between the plateau vortex and the tropical cyclone decreased the velocity of both systems, enhanced the shear field in the vortex area, therefore a strengthened vortex was maintained by the positive vorticity advection transport. (3) The low vortex provided favorable uplifting conditions for rainstorms to occur and produced strong positive vorticity as well as convergence upward movement during precipitation in the vortex area. The maximum rainfall occurred concurrently with the strongest convergence ascending motion. The positive z-helicity during precipitation process in the lower troposphere helped to maintain low vortex system and sustain precipitation; the position and time of high z-helicity provide certain indicative to the occurring time and location of heavy rainfall. (4) The transport of warm advection in the lower troposphere continuously accumulated energy in the rainstorm area, incurred frequent mesoscale convection system activities and thus resulted in sustained rainfall.

参考文献

[1]Clark J D, 1983. The GOES user's guide[Z]. NASA STI/Recon Technical Report N, 83.
[2]Maddox R A, Doswell Ⅲ C A, 1982. An examination of jet stream configurations, 500 mb vorticity advection and low-level thermal advection patterns during extended periods of intense convection[J]. Monthly Weather Review, 110(3):184-197.
[3]陈永仁, 师锐, 李跃清, 等, 2010.四川盆地持续性暴雨发生的一类环流特征研究[J].高原山地气象研究, 30(1):29-34.
[4]陈忠明, 何光碧, 崔春光, 2007.对流、湿度锋与低空急流的耦合——持续性暴雨维持的一种可能机制[J].热带气象学报, 23(3):246-254.
[5]樊晓春, 马鹏, 王位泰, 2008.青藏高原东北侧一次持续性暴雨过程分析[J].气象科技, 30(1):69-73.
[6]高文良, 郁淑华, 2018.高原涡诱发西南涡伴行个例的环境场与成因分析[J].高原气象, 37(1):54-67. DOI:10.7522/j.issn.1000-0534.2017.00020.
[7]郭大梅, 刘瑞芳, 侯建忠, 等, 2012.陕西一次远距离台风持续性暴雨的成因分析[J].气象科学, 32(3):325-331.
[8]何光碧, 曾波, 郁淑华, 等, 2016.青藏高原周边地区持续性暴雨特征分析[J].高原气象, 35(4):865-874. DOI:10.7522/j.issn.1000-0534.2015.00081.
[9]侯建忠, 陈小婷, 刘瑞芳, 等, 2011.台风登陆背景下陕西两次大暴雨过程对比分析[J].成都信息工程学院学报, 26(5):494-500.
[10]黄荣辉, 陈栋, 刘永, 2012.中国长江流域洪涝灾害和持续性暴雨的发生特征及成因[J].成都信息工程学院学报, 27(1):1-19.
[11]黄忠, 吴乃庚, 冯业荣, 等, 2008.2007年6月粤东持续性暴雨的成因分析[J].气象, 34(4):53-60.
[12]李超, 李跃清, 蒋兴文, 2017.夏季长生命史盆地涡活动对川渝季节降水的影响[J].高原气象, 36(3):685-696. DOI:10.7522/j.issn.1000-0534.2016.00064.
[13]梁生俊, 马晓华, 2012.西北地区东部两次典型大暴雨个例对比分析[J], 气象, 38(7):804-813.
[14]刘新伟, 段海霞, 赵庆云, 2011.2010年7月甘肃一次区域性暴雨分析[J].干旱气象, 29(4):472-477.
[15]牛乐田, 石小龙, 胡伟, 等, 2012.2010-07-23陕西中西部大暴雨天气诊断分析[J].陕西气象(1):1-4.
[16]王茂书, 张勇, 2011.2010年7月1618日巴中市持续性暴雨天气诊断分析[J].高原山地气象研究, 31(3):43-48.
[17]王晓芳, 黄华丽, 黄治勇, 2011.2010年56月南方持续性暴雨的成因分析[J].气象, 37(10):1206-1215.
[18]王忠东, 曹楚, 2012.2005年6月1822日浙南持续性梅雨锋暴雨过程诊断分析[J].气象与环境科学, 35(1):32-37.
[19]武麦凤, 曹玲玲, 马耀荣, 等, 2015.西北涡与登陆台风相互作用个例的诊断分析[J].暴雨灾害, 34(4):309-315. DOI:10.3969/j.issn.1004-9045.2015.04.003.
[20]郁淑华, 屠妮妮, 高文良, 2018.一类青藏高原低涡异常路径的环境场分析[J].高原气象, 37(3):686-701. DOI:10.7522/j.issn.1000-0534.2017.00039.
[21]张小玲, 张建忠, 2006.1981年7月914日四川持续性暴雨分析[J].应用气象学报, 17(增刊):79-87.
[22]张雁, 丁一汇, 马强, 2001.持续性梅雨锋暴雨的环流特征分析[J].气象与环境研究, 6(2):161-167.
[23]周淑玲, 闫淑莲, 张灿, 2009.2007年8月1012日山东半岛持续性特大暴雨的维持机制分析[J].热带气象学报, 25(5):628-634. DOI:10.3969/j.issn.1004-4965.2009.05.0015.
文章导航

/