论文

1961 -2014年青藏高原积雪时空特征及其影响因子

  • 姜琪 ,
  • 罗斯琼 ,
  • 文小航 ,
  • 吕世华
展开
  • <sup>1.</sup>成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 四川 成都 610225;<sup>2.</sup>中国科学院西北生态环境资源研究院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000

收稿日期: 2018-12-05

  网络出版日期: 2020-02-28

基金资助

国家自然科学基金项目(41975096);第二次青藏高原综合科学考察研究项目(2019QZKK0105)

Spatial-temporal Characteristics of Snow and Influence Factors in the Qinghai-Tibetan Plateau from 1961 to 2014

  • Qi JIANG ,
  • Siqiong LUO ,
  • Xiaohang WEN ,
  • Shihua Lü
Expand
  • <sup>1.</sup>School of Atmospheric Sciences, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, , Chengdu 610225, Sichuan, China;<sup>2.</sup>Key Laboratory for Land Process and Climate Change in Cold and Arid Regions, Northwest Institute of Ecological and Environmental Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

Received date: 2018-12-05

  Online published: 2020-02-28

摘要

利用青藏高原(下称高原)1961 -2014年地面110个气象站积雪深度、 积雪日数、 气温和降水逐日资料, 系统地分析了高原积雪深度和积雪日数时空特征, 并进一步探究了高原积雪深度和积雪日数与气候因子和地理因子之间的关系。研究发现: 1961 -2014年高原年平均积雪深度和积雪日数分别为0.26 cm和23.78 d, 空间和季节尺度上分布不均匀, 且积雪深度和积雪日数大值并不完全重合; 在整体变化趋势上, 积雪深度和积雪日数均呈缓慢下降趋势, 分别为-0.0080±0.0086 cm·(10a)-1p=0.36)和-0.64±0.47 d·(10a)-1p=0.17), 但在数理统计上不显著, 且各站点差异性大; 积雪深度和积雪日数在春季、 冬季和年表现为“减-增-减”的年代际变化特征, 而在秋季为“增-减”的变化特征; 气温与积雪深度和积雪日数均有较好的相关性, 冬季的降水与积雪深度和积雪日数高度相关; 积雪深度和积雪日数随海拔呈增加趋势, 积雪日数与纬度也高度相关, 但积雪深度与纬度的相关性不明显。

本文引用格式

姜琪 , 罗斯琼 , 文小航 , 吕世华 . 1961 -2014年青藏高原积雪时空特征及其影响因子[J]. 高原气象, 2020 , 39(1) : 24 -36 . DOI: 10.7522/j.issn.1000-0534.2019.00022

Abstract

Using observed daily data, which include the snow depth, the number of snow?cover days, temperature and precipitation data, from 110 meteorological stations over the Qinghai?Tibetan Plateau from 1961 to 2014, the spatial?temporal characteristics of the snow depth and the number of snow?cover days in Qinghai?Tibetan Plateau were analyzed and the relationship between them and climatic and geographical factors were explored.The results showed the annual average of the snow depth and the number of snow?cover days were 0.26 cm and 23.78 d, respectively.And the distribution was uneven on the spatial and seasonal scales.The great value of the snow depth and the number of snow?cover days did not completely coincide.As for trend analysis, both the depth and the number of days with snow cover showed a slow decline trend, which was -0.0080±0.0086 cm·(10a)-1 (p=0.36) and -0.64±0.47 d·(10a)-1 (p=0.17), respectively.But the trend was not significant in mathematical statistics.The trend varied significantly from stations to stations.The snow depth and the number of snow?cover days in spring, winter and annual were characterized by the interdecadal variation of “decrease?increase?decrease”, while it showed “increasing?decreasing” in autumn.Temperature highly corresponded to the snow depth and the number of snow?cover days while precipitation was highly correlated with the snow depth and the number of snow?cover days in winter.The depth and days of snow cover decreased with the increase of sea level altitude.Latitude showed a high correlation with the number of snow?cover days while the correlation with the snow depth was not obvious.

参考文献

[1]Armstrong R L, Brodzik M J, 2010.Recent northern hemisphere snow extent, a comparison of data derived from visible and microwave satellite sensors[J].Geophysical Research Letters, 28(19): 3673-3676.
[2]Barnett T P, 1989.The effect of Eurasian snow?cover on regional and global climate variations[J].Journal of Atmospheric Sciences, 46(5): 661-686.
[3]Bokhorst S, Pedersen S H, Brucker L, al et, 2016.Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts[J].Ambio, 45(5): 516-537.
[4]Che T, Xin L, Jin R, al et, 2008.Snow depth derived from passive microwave remote?sensing data in China[J].Annals of Glaciology, 49(1): 145-154.
[5]Ding Y, Ren G, Zhao Z, al et, 2007.Detection, causes and projection of climate change over China: An overview of recent progress[J].Advances in Atmospheric Sciences, 24(6): 954-971.
[6]Ding Y, Sun Y, Wang Z, al et, 2009.Inter?decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes[J].International Journal of Climatology, 29(13): 1926-1944.
[7]Huang X, Deng J, Wang W, al et, 2017.Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau[J].Remote Sensing of Environment, 190: 274-288.
[8]IPCC, 2007.Climate change 2007?The physical science basis: Working group I contribution to the 4th assessment report of the Intergovernmental panel on climate change[M].Cambridge: Cambridge University Press.
[9]Li R, Zhao L, Ding Y J, al et, 2012.Temporal and spatial variations of the active layer along the Qinghai?Tibet Highway in a permafrost region[J].Chinese Science Bulletin, 57(35): 4609-4616.
[10]Li W, Guo W, Qiu B, al et, 2018.Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium?range time scales[J].Nature Communications, 2018, 9(1): 4243.
[11]Mountain Research Initiative Elevation Dependent Warming (EDW) Working Group, 2015.Elevation?dependent warming in mountain regions of the world[J].Nature Climate Change, 5(5): 424-430.
[12]Pepin N, Bradley R S, Diaz H F, al et, 2015.Elevation?dependent warming in mountain regions of the world[J].Nature Climate Change, 5(5): 424-430.
[13]Qin D H, Liu S Y, Li P J, 2006.Snow cover distribution, variability, and response to climate change in western China[J].Journal of Climate, 19(9): 1820-1833.
[14]Ross D B, 2000.Northern hemisphere snow cover variability and change, 1915-97 [J].Journal of Climate, 13(13): 2339-2355.
[15]Wang J, Li S, 2006.Effect of climatic change on snowmelt runoffs in mountainous regions of inland rivers in Northwestern China[J].Science in China (Earth Sciences), 49(8): 881-888.
[16]Wang Z, Wu R, Chen S, al et, 2018.Influence of western Tibetan Plateau summer snow cover on East Asian summer rainfall[J].Journal of Geophysical Research: Atmospheres, 123(5): 2371-2386.DOI: 10.1002/2017JD028016.
[17]Xu W, Ma L, Ma M, al et, 2017.Spatial?temporal variability of snow cover and depth in the Qinghai?Tibetan Plateau[J].Journal of Climate, 30(4): 1521-1533.
[18]Yan L, Liu X, 2014.Has climatic warming over the Tibetan Plateau paused or continued in recent years[J].Journal of Atmospheric and Oceanic Technology.1(1): 13-28.
[19]Zhang Y, Li T, Wang B, 2004.Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon[J].Journal of Climate, 17(14): 2780-2793.
[20]安迪, 李栋梁, 袁云, 等, 2009.基于不同积雪日定义的积雪资料比较分析[J].冰川冻土, 31 (6): 1019-1027.
[21]白淑英, 史建桥, 沈渭寿, 等, 2014.卫星遥感西藏高原积雪时空变化及影响因子分析[J].遥感技术与应用, 29(6): 954-962.
[22]柏露, 姚宜斌, 雷祥旭, 等, 2018.近40年青藏高原地区地表温度的年际及季节性变化特征分析[J].测绘地理信息, 2018, 43(2): 15-18.
[23]保云涛, 游庆龙, 谢欣汝, 2018.青藏高原积雪时空变化特征及年际异常成因[J].高原气象, 37(4): 899-910.DOI: 10.7522/j.issn.1000-0534.2017.00099.
[24]伯玥, 李小兰, 王澄海, 2014.青藏高原地区积雪年际变化异常中心的季节变化特征[J].冰川冻土, 36 (6): 1353-1362.
[25]陈烈庭, 2001.青藏高原异常雪盖和ENSO在1998年长江流域洪涝中的作用[J].大气科学, 25 (2): 184-192.
[26]除多, 2016.2000 -2014年西藏高原积雪覆盖时空变化[J].高原山地气象研究, 36(1): 27-37.
[27]除多, 杨勇, 罗布坚参, 等, 2015.1981 -2010 年青藏高原积雪日数时空变化特征分析[J].冰川冻土, 37(6): 1461-1472.
[28]窦燕, 陈曦, 2011.基于站点的中国天山山区积雪要素变化研究[J].地球科学进展, 26(4): 441-448.
[29]段安民, 肖志祥, 吴国雄, 2016.1979 -2014年全球变暖背景下青藏高原气候变化特征[J].气候变化研究进展, 12 (5): 374-381.
[30]冯璐, 仲雷, 马耀明, 等, 2016.基于土壤温湿度观测资料估算藏北高原地区土壤热通量[J].高原气象, 35(2): 297-308.DOI: 10.7522/j.issn.1000-0534.2017.00099.
[31]郭建平, 刘欢, 安林昌, 等,2016.2001 -2012年青藏高原积雪覆盖率变化及地形影响[J].高原气象, 35(1): 24-33.DOI: 10.7522/j.issn.1000-0534.2014.00140.
[32]贺晋云, 张明军, 王鹏, 等, 2011.新疆气候变化研究进展[J].干旱区研究, 28(3): 499-508.
[33]胡豪然, 梁玲, 2013.近50年青藏高原东部冬季积雪的时空变化特征[J].地理学报, 68 (11): 1493-1503.
[34]胡豪然, 伍清, 2016.近44年青藏高原东部积雪的年代际变化特征及其与降雪和气温的关系[J].高原山地气象研究, 36 (1): 38-43.
[35]胡列群, 李帅, 梁凤超, 2013.新疆区域近50a积雪变化特征分析[J].冰川冻土, 35(4): 793-800.
[36]柯长青, 李培基, 1998.青藏高原积雪分布与变化特征[J].地理学报, 53(3): 209-215.
[37]李栋梁, 王春学, 2011.积雪分布及其对中国气候影响的研究进展[J].大气科学学报, 34(5): 627-636.
[38]李培基, 1996.亚洲季风模拟试验中青藏高原积雪强迫问题的讨论[J].高原气象, 15(3): 350-355.
[39]李培基, 米德生, 1983.中国积雪的分布[J].冰川冻土, 5(4): 9-18.
[40]李小兰, 张飞民, 王澄海, 2012.中国地区地面观测积雪深度和遥感雪深资料的分析比较[J].冰川冻土, 34 (4): 755-764.
[41]李燕, 闫加海, 张冬峰, 2018.青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J].高原气象, 37(2): 317-324.DOI: 10.7522/j.issn.1000-0534.2017.00040.
[42]吕晶, 李忠贤, 李跃清, 等, 2018.峨眉山及其周边地区降水气候特征研究[J].高原气象, 37(6): 1544-1562.DOI: 10.7522/j.issn.1000-0534.2018.00049.
[43]马丽娟, 秦大河, 2012.1957 -2009 年中国台站观测的关键积雪参数时空变化特征[J].冰川冻土, 34(1): 1-11.
[44]马丽娟, 秦大河, 卞林根, 等, 2010.青藏高原积雪的脆弱性评估[J].气候变化研究进展, 6(5): 325-331.
[45]秦大河, 周波涛, 效存德, 2014.冰冻圈变化及其对中国气候的影响[J].气象学报, 72(5): 869-879.
[46]宋燕, 张菁, 李智才, 等, 2011.青藏高原冬季积雪年代际变化及对中国夏季降水的影响[J].高原气象, 30(4): 843-851.
[47]孙晓瑞, 高永, 丁延龙, 等, 2017.内蒙古积雪时空分布特征及其与气候因子的相关性[J].内蒙古林业科技, 43(2): 10-15.
[48]王澄海, 王芝兰, 崔洋, 2009.40余年来中国地区季节性积雪的空间分布及年际变化特征[J].冰川冻土, 31(2): 301-310.
[49]王春学, 李栋梁, 2012.中国近50a积雪日数与最大面积深度的时空变化规律[J].冰川冻土, 34(2): 247-256.
[50]韦志刚, 黄荣辉, 陈文, 2005.青藏高原冬春积雪年际振荡成因分析[J].冰川冻土, 27(4): 491-497.
[51]韦志刚, 黄荣辉, 陈文, 等, 2002.青藏高原地面站积雪的空间分布和年代际变化特征[J].大气科学, 26(4): 496-508.
[52]魏凤英, 2007.现代气候统计诊断与预测技术[M].北京: 气象出版社.
[53]吴成启, 唐登勇, 2017.近50年来全球变暖背景下青藏高原气温变化特征[J].水土保持研究, 24(6): 262-266, 272.
[54]徐士琦, 傅帅, 张小泉, 2018.1961 -2016年吉林省积雪增量与积雪日数时空变化特征[J].气象与环境学报, 34(2): 44-51.
[55]张人禾, 张若楠, 左志燕, 2016.中国冬季积雪特征及欧亚大陆积雪对中国气候影响[J].应用气象学, 27(5): 513-526.
[56]张晓闻, 臧淑英, 孙丽, 2018.近40年东北地区积雪日数时空变化特征及其与气候要素的关系[J].地球科学进展, 33(9): 958-968.
[57]章诞武, 丛振涛, 倪广恒, 2016.1956 -2010年中国降雪特征变化[J].清华大学学报 (自然科学版), 56 (4): 381-386, 393.
[58]郑然, 李栋梁, 蒋元春, 2015.全球变暖背景下青藏高原气温变化的新特征[J].高原气象, 34(6): 1531-1539.DOI: 10.7522/j.issn.1000-0534.2014.00123.
[59]中国气象局, 2003.地面气象观测规范[M].北京: 气象出版社.
[60]钟珊珊, 李渊, 张新厂, 2018.1951 -2014年中国冬季暖日频次时空分布特征及其成因分析[J].高原气象, 37(6): 1725-1736.DOI: 10.7522/j.issn.1000-0534.2018.00095.
[61]周扬, 徐维新, 张娟, 等, 2017.2013 -2015 年青藏高原玛多地区两次动态融雪过程及其与气温关系对比分析[J].自然资源学报, 32(1): 101-113.
文章导航

/