利用三源降水融合资料和欧洲中期数值预报中心ERA5逐小时再分析数据, 分析暖季秦岭及周边地区的降水日变化特征及可能的成因。研究表明: 暖季秦岭南北降水日变化存在显著差异, 秦岭南部降水日峰值主要是盆地地形影响下的夜雨, 秦岭北部降水日峰值则是午后黄土高原上的昼雨。青藏高原东部延伸区、 黄土高原等大地形对研究区域长、 短时降水的空间分布贡献显著; 秦岭南部短时降水频率高, 但L3级降水强度相对较低, 北部L3级降水频率低、 强度大。盆地地形作用下夜间的山风与青藏高原南侧地形槽前定常西南暖湿上升气流叠加, 800 hPa以上上升运动异常加强, 形成多个铅直次级环流, 是秦岭南部夜雨特别显著的重要原因; 而白天受谷风的作用, 使得地形槽前上升气流减弱, 昼雨相对较少。午后热力作用加强, 南风上升气流与中上层西北风下沉气流在700 hPa附近交汇, 使得秦岭北部黄土高原午后强降水异常多发。
Based on three sources(automatic weather station observation, retrieve precipitation of satellite and weather radar) precipitation fusion data, the ERA5 reanalysis data from European Centre for Medium-range Weather Forecasts(ECMWF), the diurnal variation of warm season precipitation and its probable cause over Qinling and surrounding areashas been revealed.Results show that diurnal variations of precipitation on both sides of Qinling in the warm season were significantly different, affected by the topography, diurnal peaks of precipitation amount and precipitation frequency in the southern Qinling occurs at night and the north occurs at afternoon.The spatial distribution of long and short duration precipitation is significantly affected by the large terrain, the frequency of short-term precipitation in the southern Qinling is very high, but the precipitation intensity is relatively small, while the frequency of short-term precipitation in the northern Qinling is low but the intensity is very large.Mountain winds and the southwest warm and humid updraft air of terrain trough affected by the Tibetan Plateau over played is an important reason for the frequent occurrence of night rains in the southern Qinling.Affected by the valley wind circulations during the day, the updraft airweakened in the front of the terrain trough, itmakes the daytime precipitation less.The local heating of Loess Plateau, updraft and downdraft air intersection around 700 hPa, which causes the heavy rainfall more frequent in the northern Qinling in the afternoon.
[1]Bowman K P, Collier J C, North G R, al et, 2005.Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data[J].Journal of Geophysical Research: Atmospheres, 110: 1-14.
[2]Dai A, 1999.Recent changes in the diurnal cycle of precipitation over the United States[J].Geophysical Research Letters, 26(3): 341-344.
[3]Landin M G, Bosart L F, 1985.Diurnal variability of precipitation in the northeastern United States[J].Monthly Weather Review, 113(6): 989-1014.
[4]Liu Q, Fu Y, 2007.An examination of summer precipitation over Asia based on TRMM/TMI[J].Science in China Series D: Earth Sciences, 50(3): 430-441.
[5]Mao J Y, Wu G X, 2012.Diurnal variations of summer precipitation over the Asian monsoon region as revealed by TRMM satellite data[J].Science China Earth Sciences, 55(4): 554-566.DOI: 10. 1007/s11430-011-4315-x.
[6]Nesbitt S W, Zipser E J, 2003.The diurnal cycle of rainfall and convective intensity according to three years ofTRMM measurements[J].Journal of Climate, 16(10): 1456-1475.
[7]Ramage C S, 1952.Diurnal variation of summer rainfall over east China, Korea and Japan[J].Journal of Meteorology, 9(2): 83-86.
[8]Sorooshian S, Gao X, Hsu K, al et, 2002.Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information[J].Journal of Climate, 15(9): 983-1001.
[9]Tong K, Su F, Yang D, al et, 2014.Evaluation of satellite precipitation retrievals and their potential utilitiesin hydrologic modeling over the Tibetan Plateau[J].Journal of Hydrology, 519: 423-437.
[10]Wallace J M, 1975.Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States[J].Monthly Weather Review, 103: 406-419.
[11]Yu R C, Xu Y P, Zhou T J, al et, 2007b.Relation between rainfall duration and diurnal variation in the warm season precipitation over central China[J].Geophysical Research Letters, 34(13): L13703.
[12]Yu R C, Zhou T J, Xiong A Y, al et, 2007a.Diurnal variations of summer precipitation over contiguous China[J].Geophysical Research Letters, 34(1): L01704.
[13]Zhou X X, Ding Y H, Wang P X, 2010.Moisture transport in Asian summer monsoon region and its relationship with summer precipitation in China[J].Acta Meteorologica Sinica, 24(1): 31-42.
[14]Zuidema P, 2003.Convective clouds over the Bay of Bengal[J].Monthly Weather Review, 131: 780-798.
[15]白爱娟, 刘晓东, 刘长海, 2011.青藏高原与四川盆地夏季降水日变化的对比分析[J].高原气象, 30(4): 852-859.
[16]白爱娟, 刘长海, 刘晓东, 2008.TRMM 多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化[J].地球物理学报, 51(3): 704-714.
[17]陈炯, 郑永光, 张小玲, 等, 2013.中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析[J].气象学报, 71(3): 367-382.
[18]计晓龙, 吴昊旻, 黄安宁, 等, 2017.青藏高原夏季降水日变化特征分析[J].高原气象, 36(5): 1188-1200.DOI: 10.7522/j.issn. 1000-0534.2016.0011.
[19]蒋慧敏, 刘春云, 贾健, 等, 2019.新疆夏季对流性降水时空分布特征及成因分析[J].高原气象, 38(2): 340-348.DOI: 10.7522/j.issn.1000-0534.2018.00087.
[20]卢萍, 宇如聪, 周天军, 2008.2003年8月“巴蜀夜雨”过程的模拟和分析研究[J].气象学报, 66(3): 371-380.
[21]潘留杰, 张宏芳, 陈小婷, 等, 2018.秦岭及周边地区夏季降水的主模态分析[J].大气科学学报, 41(3): 377-387.
[22]潘旸, 沈艳, 宇婧婧, 等, 2012.基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验[J].气象学报, 70(6): 1381-1389.
[23]任晨平, 曹洁, 王黎娟, 等, 2013.有限区域流函数和速度势的3种求解方法在分析台风Bilis暴雨增幅中的比较研究[J].气候与环境研究, 18 (6): 721-732.DOI: 10.3878/j.issn.1006-9585. 2012.12145.
[24]沈艳, 潘旸, 宇婧婧, 等, 2013.中国区域小时降水量融合产品的质量评估[J].大气科学学报, 36(1): 37-46.
[25]王子谦, 段安民, 李茂善, 等, 2016.基于WRF模式的青藏高原斜坡和平台加热影响亚洲夏季风的模拟研究[J].地球物理学报, 59(9): 3175-3187.DOI: 10.6038/cjg20160904.
[26]位晶, 段克勤, 2018.基于卫星资料的秦岭南北云系及其垂直结构特征[J].高原气象, 37(3): 777-785.DOI: 10.7522/j.issn. 1000-0534.2018.00057.
[27]许建伟, 高艳红, 彭保发,等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.
[28]于灏, 周筠珺, 李倩, 等, 2020.基于CMIP5模式对四川盆地湿季降水与极端降水的研究[J].高原气象, 39(1): 68-79.DOI: 10.7522/j.issn.1000-0534.2019.00007.
[29]宇如聪, 李建, 2016.中国大陆日降水峰值时间位相的区域特征分析[J].气象学报, 74(1): 18-30.
[30]原韦华, 宇如聪, 傅云飞, 2014.中国东部夏季持续性降水日变化在淮河南北的差异分析[J].地球物理学报, 57(3): 752-759.DOI: 10.6038/cjg2014306.
[31]张宏芳, 潘留杰, 卢珊,等, 2015.1901-2012年陕西降水、 气温变化特征[J].中国沙漠, 35(6): 1674-1682.
[32]张蒙, 黄安宁, 计晓龙, 等, 2016.卫星反演降水资料在青藏高原地区的适用性分析[J].高原气象, 35( 1): 34-42.DOI: 10.7522 /j.issn.1000-0534.2014.00152.