论文

青藏高原积雪变化特征及其对土壤水热传输的影响

  • 罗江鑫 ,
  • 吕世华 ,
  • 王婷 ,
  • 刘宜纲
展开
  • <sup>1.</sup>成都信息工程大学大气科学学院,四川 成都 610225;<sup>2.</sup>南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏 南京 210044;<sup>3.</sup>四川省气象灾害防御技术中心,四川 成都 610072

收稿日期: 2020-07-20

  网络出版日期: 2020-12-28

基金资助

第二次青藏高原综合科学考察研究(2019QZKK0103);国家自然科学基金项目(41775016)

Variation Characteristics of Snow Cover and Its Influence on Soil Water and Heat Transfer on the Qinghai-Xizang Plateau

  • Jiangxin LUO ,
  • Shihua Lü ,
  • Ting WANG ,
  • Yigang LIU
Expand
  • <sup>1.</sup>Chengdu University of Information Technology,Chengdu 610225,Sichuan,China;<sup>2.</sup>Collaborative Innovation Science and Technology,Nanjing 210044,Jiangsu,China;<sup>3.</sup>Sichuan Meteorological Disaster Prevention Technology Center,Chengdu 610072,Sichuan,China

Received date: 2020-07-20

  Online published: 2020-12-28

摘要

青藏高原积雪变化对陆面能量水分传输过程有重要影响。本文采用RegCM4.7-CLM4.5模式模拟了高原及其周边地区31年的积雪过程, 通过对模拟结果的EOF分解, 发现高原积雪的时空变化主要呈现为高原主体与高原东北部反相、 东西反相以及南北反相3种模态, 方差贡献率分别为30.05%, 14.86%和8.48%。合成分析显示, 高原积雪异常中心与高原的主要积雪区较为一致, 积雪深度与积雪日数均有减小的气候倾向, 高原东南部的“三江源区”减小趋势最明显, 高原中北部积雪有略微增加的趋势。积雪与土壤水热参量的相关分析显示, 多雪区积雪可以有效减少土壤中热量的流失, 对土壤起到“保温”作用, 积累和鼎盛阶段积雪与土壤温度、 地表热通量同位相变化; 积雪融水又可以增加土壤湿度, 对土壤起到“增湿”作用, 鼎盛阶段积雪与土壤含水量正相关, 积雪日数对土壤湿度的影响要高于积雪深度。在多雪区, 多雪年积累阶段、 鼎盛阶段的土壤温度和土壤湿度也要高于少雪年。对整个高原而言, 积雪偏多使得土壤冻结程度加大, 土壤含水量减少。

本文引用格式

罗江鑫 , 吕世华 , 王婷 , 刘宜纲 . 青藏高原积雪变化特征及其对土壤水热传输的影响[J]. 高原气象, 2020 , 39(6) : 1144 -1154 . DOI: 10.7522/j.issn.1000-0534.2019.00143

Abstract

In this paper, RegCM4.7-CLM4.5 is used to simulate the snow process on the Qinghai-Xizang Plateau (QXP).Through EOF decomposition, it is found that the spatial and temporal variation of snow cover on QXP mainly presents three modes and the variance contribution rates are 30.05%, 14.86% and 8.48%, respectively.The composite analysis shows that the abnormal center of snow cover is consistent with the main snow areas on QXP.The snow depth and snow days have a decreasing trend, the "Three River source area" in the southeast of QXP has the most obvious decreasing trend.The snow cover in the central and northern part of QXP has a slight increase trend.The correlation analysis of snow cover and soil water and heat parameters reveals that snow cover can effectively reduce the loss of heat in the soil and play a "heat preservation" effect on the soil.Snow cover changes in the same phase with soil temperature and surface heat flux at the accumulation and peak stage; Snow melting water can increase soil moisture and "humidify" the soil.At the peak stage, snow cover and soil moisture content are positively correlated.The effect of snow days on soil moisture was higher than that of snow depth.The soil temperature and soil moisture in the accumulation stage and the peak stage in high snowfall years are also higher than those in low snowfall years.For the whole QXP, more snow makes the degree of soil freezing increase and the soil moisture content decrease.

参考文献

[1]Fu Q, Hou R J, Li T X, et al, 2018.Effects of soil water and heat relationship under various snow cover during freezing-thawing periods in Songnen Plain, China[J].Scientific Reports, 8(1): 1-12.
[2]Gao X, Shi Y, Song R, et al, 2008.Reduction of future monsoon precipitation over China: Comparison between a high-resolution RCM simulation and the driving GCM[J].Meteorology and Atmospheric Physics, 100: 73-86.
[3]Kong X H, Wang A H, Bi X Q, et al, 2019.Assessment of temperature extremes in China using RegCM4 and WRF[J].Advances in Atmospheric Sciences, 36(4): 363-377.
[4]Lakhraj-Govende R, Stefan W G, 2018.Assessing the impact of El Ni?o-Southern Oscillation on South African temperatures during austral summer[J].International Journal of Climatology, 39(1): 1-14.
[5]Mackay A, 2008.Climate Change 2007: Impacts, adaptation and vulnerability.Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change[J].Journal of Environmental Quality, 37(6): 2407.
[6]Wang R, Zhu Q K, Ma H, et al, 2017.Spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River during the period 2002 -2011 based on the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) data[J].Journal of Arid Land, 9(6): 850-864.
[7]Xu X, Guo J, Koike T, et al, 2012."Downstream Effect" of winter snow cover over the Eastern Tibetan Plateau on climate anomalies in East Asia[J].Journal of the Meteorological Society of Japan, 90(Suppl): 113-130.
[8]Zhang T J, 2005.Influence of the seasonal snow cover on the ground thermal regime: An overview[J].Reviews of Geophysics, 43(4): RG4002.
[9]保云涛, 游庆龙, 谢欣汝, 2018.青藏高原积雪时空变化特征及年际异常成因[J].高原气象, 37(4): 899-910.DOI: 10.7522/j.issn.1000-0534.2017.00099.
[10]边晴云, 吕世华, 文莉娟, 等, 2017.黄河源区不同降雪年土壤冻融过程及其水热分布对比分析[J].干旱区研究, 34(4): 906-911.
[11]伯玥, 李小兰, 王澄海, 2014.青藏高原地区积雪年际变化异常中心的季节变化特征[J].冰川冻土, 36( 6): 1353-1362.
[12]车涛, 李新, 2005.1993 -2002年中国积雪水资源时空分布与变化特征[J].冰川冻土, 27(1): 64-67.
[13]段安民, 肖志祥, 王子谦, 2018.青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展[J].大气科学, 42(4): 755-766.
[14]高荣, 韦志刚, 董文杰, 等, 2003.20世纪后期青藏高原积雪和冻土变化及其与气候变化的关系[J].高原气象, 22(2): 191-196.
[15]郭其蕴, 王继琴, 1985.青藏高原的积雪及其对东亚季风的影响[J].高原气象, 4(2): 116-124.
[16]吉哲君, 赵惠珍, 王丽娜, 2016.甘南高原近37年冬季冻土深度变化趋势及影响因子分析[J].青海气象, (2): 23-29.
[17]李培基, 1993.中国西部积雪变化特征[J].地理学报, 48(6): 505-515.
[18]李培基, 1995.高亚洲积雪分布[J].冰川冻土, 17(4): 291-298.
[19]林朝晖, 刘辉志, 谢正辉, 等, 2008.陆面水文过程研究进展[J].大气科学, 32(4): 935-949.
[20]刘晓东, 1989.冰雪变化对大气环流和天气气候的影响[J].地球科学进展, 4(6): 53-58.
[21]罗江鑫, 吕世华, 马翠丽, 等, 2020.青藏高原多雪年与少雪年土壤水热特征模拟分析[J/OL].高原气象, 39(6): 1-12.DOI: 10. 7522/j.issn.1000-0534.2020.00031.
[22]秦艳慧, 吴通华, 李韧, 等, 2015.ERA-Interim地表温度资料在青藏高原多年冻土区的适用性[J].高原气象, 34(3): 666-675.DOI: 10.7522/j.issn.1000-0534.2014.00151.
[23]覃郑婕, 侯书贵, 王叶堂, 等, 2017.青藏高原冬季积雪时空变化特征及其与北极涛动的关系[J].地理研究, 36(4): 743-754.
[24]陶亦为, 孙照渤, 李维京, 等, 2011.ENSO与青藏高原积雪的关系及其对我国夏季降水异常的影响[J].气象, 37(8): 919-928.
[25]王澄海, 董文杰, 韦志刚, 2001.青藏高原季节性冻土年际变化的异常特征[J].地理学报, 56(5): 523-531.
[26]王澄海, 王芝兰, 崔洋, 2009.40余年来中国地区季节性积雪的空间分布及年际变化特征[J].冰川冻土, 31(2): 301-310.
[27]王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36(5): 1153-1164.DOI: 10.7522/j.issn. 1000-0534.2016.00117.
[28]王素, 2015.四类ENSO事件对东南亚降水异常的影响[D].杭州: 浙江大学.
[29]王婷, 李照国, 吕世华, 等, 2019.青藏高原积雪对陆面过程热量输送的影响研究[J].高原气象, 38(5): 920-934.DOI: 10.7522/j.issn.1000-0534.2019.00026.
[30]韦志刚, 黄荣辉, 陈文, 等, 2002.青藏高原地面站积雪的空间分布和年代际变化特征[J].大气科学, 26(4): 496-508.
[31]韦志刚, 吕世华, 1995.青藏高原积雪的分布特征及其对地面反照率的影响[J].高原气象, 14(1): 67-73.
[32]徐国昌, 李珊, 洪波, 1994.青藏高原雪盖异常对我国环流和降水的影响[J].应用气象学报, 5(1): 62-67.
[33]杨凯, 胡田田, 王澄海, 2017.青藏高原南、 北积雪异常与中国东部夏季降水关系的数值试验研究[J].大气科学, 41(2): 345-356.
[34]姚闯, 吕世华, 王婷, 等, 2019.黄河源区多、 少雪年土壤冻融特征分析[J].高原气象, 38(3): 474-483.DOI: 10.7522/j.issn. 1000-0534.2018.00142.
[35]张涛, 王根绪, 杨燕, 等, 2018.青藏高原多年冻土区不同草地类型生态系统呼吸季节差异性[J].冰川冻土, 40(6): 1255-1264.
[36]周幼吾, 郭东信, 1982.我国多年冻土的主要特征[J].冰川冻土, 4(1): 1-21.
文章导航

/