论文

一次寒潮过程中冷堆增强的动力原因分析

  • 张弛 ,
  • 沈新勇 ,
  • 张玲 ,
  • 郭春燕 ,
  • 李小凡
展开
  • <sup>1.</sup>南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/ 气象灾害预报预警与评估协同创新中心,江苏 南京 210044;<sup>2.</sup>南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082;<sup>3.</sup>内蒙古气象服务中心,内蒙古 呼和浩特 010051;<sup>4.</sup>浙江大学地球科学学院,浙江 杭州 310027

收稿日期: 2020-02-24

  网络出版日期: 2021-04-28

基金资助

国家自然科学基金项目(41790471);中国科学院战略性先导科技专项(XDA20100304)

The Dynamical Cause of Cold Dome’s Intensification in a Cold Wave Process

  • Chi ZHANG ,
  • Xinyong SHEN ,
  • Ling ZHANG ,
  • Chunyan GUO ,
  • Xiaofan LI
Expand
  • <sup>1.</sup>Key Laboratory of Meteorological Disaster,Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China;<sup>2.</sup>Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai 519082,Guangdong,China;<sup>3.</sup>Inner Mongolia Meteorological Service Center,Hohhot 010051,Inner Mongolia,China;<sup>4.</sup>School of Earth Sciences,Zhejiang University,Hangzhou 310027,Zhejiang,China

Received date: 2020-02-24

  Online published: 2021-04-28

摘要

利用ECMWF的0.75°×0.75°再分析资料对2016年2月14日的寒潮冷堆增强过程进行了分析, 结果发现, 寒潮冷堆增强过程中等熵面位涡守恒, 315 K等熵面上寒潮冷堆表现为6 PVU的高位涡中心, 垂直方向上寒潮冷堆区域高位涡下传到低层形成高位涡柱, 冷堆的运动对应高位涡柱的运动。分析500 hPa寒潮冷堆变化发现, 寒潮冷堆中存在上升运动使空气绝热冷却, 导致寒潮冷堆的增强。从动力学角度分析冷堆空气抬升冷却的原因, 寒潮冷堆主要位于两支高空急流核的左前方, 受到两支高空急流次级环流上升支的共同影响, 上升运动导致的绝热冷却使寒潮冷堆增强。此外在冷堆移动过程中, 由于冷堆与低压中心相对位置发生变化, 冷堆温度最低处绝对涡度增加, 根据位涡守恒原理, 气柱拉伸, 冷堆的冷空气变得更加深厚, 寒潮冷堆增强。

本文引用格式

张弛 , 沈新勇 , 张玲 , 郭春燕 , 李小凡 . 一次寒潮过程中冷堆增强的动力原因分析[J]. 高原气象, 2021 , 40(2) : 394 -402 . DOI: 10.7522/j.issn.1000-0534.2020.00051

Abstract

Based on the ECMWF 0.75°×0.75° reanalysis data, the dynamical cause of cold dome’s intensification on 14 February 2016 is analyzed.The isentropic potential vorticity is conserved during the progress and the cold dome at 315 K isentropic surface is characterized by a high potential vorticity center of 6 PVU.In the vertical direction, the high potential vorticity in cold dome transports downward and forms an air column with high potential vorticity.The motion of the cold dome is consistent with that of the high potential vorticity air column.The main cause of cold dome’s intensification in 500 hPa is analyzed, there is an ascending motion in cold dome, and ascending adiabatic expansion cause the cold dome’s intensification.The reasons for the ascending motion in cold dome are analyzed with dynamical diagnostic method.There are two upper jet streams in 300 hPa, and the cold dome is located in the left side of the upper jet stream exits.Due to the influence of the ascending motion caused by upper jet streams’ secondary circulation, the air in clod dome becomes colder adiabatically, it’s the main reason for cold dome strengthening.In addition, as the cold dome moves, the position of the cold dome relative to the low-pressure center changes, and the absolute vorticity at the lowest temperature of clod dome increases, according to the conservation principle of potential vorticity, the air column is stretched, and the cold dome is strengthened.

参考文献

[1]Binder H, Boettcher M, Joos H, et al, 2016.The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter[J].Journal of the Atmospheric Sciences, 73(10): 3997-4020.
[2]Ding Y H, 1990.Build-up, air mass transformation and propagation of siberian high and its relations to cold surge in east asia[J].Meteorology & Atmospheric Physics, 44(2): 281-292.
[3]Gwendal R, Robert L, Codron F, 2016.A short-term negative eddy feedback on midlatitude jet variability due to planetary wave reflection[J].Journal of the Atmospheric Sciences, 73(11): 4311-4328.
[4]Hoskins B J, Mcintyre M E, Robertson A W, 1985.On the use and significance of isentropic potential vorticity maps[J].Quarterly Journal of the Royal Meteorological Society, 111(470): 877-946.
[5]Meral D, 2017.The large-scale environment of the European 2012 high-impact cold wave: prolonged upstream and downstream atmospheric blocking[J].Weather, 72(10): 297-301.
[6]Riehl H, Jr S T, 1953.A Further Study on the Relation between the Jet Stream and Cyclone Formation[J].Tellus, 5(1), 66-79.
[7]Shellie M R, Matthew H H, 2016.On the relationship between inertial instability, poleward momentum surges and jet intensifications near midlatitude cyclones[J].Journal of the Atmospheric Sciences, 73(6): 2299-2315.
[8]丁一汇, 马晓青, 2007.2004/2005年冬季强寒潮事件的等熵位涡分析[J].气象学报, 65(5): 695-707.
[9]高守亭, 丁一汇, 1992.寒潮期间高空波动与东亚急流的相互作用[J].大气科学, 16(6): 718-724.
[10]高守亭, 陶诗言, 1991.高空急流加速与低层锋生[J]. 大气科学, 15(2): 13-24.
[11]何光碧, 肖玉华, 师锐, 2019.一次伴有高原低涡和热带气旋活动的持续性暴雨过程分析[J].高原气象, 38(5): 1004-1016.DOI: 10.7522/j.issn.1000-0534.2018.00131.
[12]康志明, 金荣花, 鲍媛媛, 2010.1951 -2006年期间我国寒潮活动特征分析[J].高原气象, 29(2): 420-428.
[13]李崇银, 肖子牛, 1993.大气对外强迫低频遥响应的数值模拟 II: 对欧亚中高纬“寒潮”异常的响应[J].大气科学, 17(5): 523-531.
[14]李艳, 张金玉, 王嘉禾, 等, 2018.典型极端低温事件中高空急流和阻塞高压的特征及其协同作用[J].兰州大学学报(自然科学版), 54(5): 106-115+126.
[15]李长青, 丁一汇, 1989.西北太平洋爆发性气旋的诊断分析[J].气象学报, 47(2): 180-190.
[16]刘金卿, 李子良, 2020.一次西南涡诱生气旋引发的湖南大暴雨个例分析[J].高原气象, 39(2): 311-320.DOI: 10.7522/j.issn. 1000-0534.2019.00028.
[17]陆光明, 姚竞生, 陶祖钰, 1983.寒潮冷堆增强的动力原因[J].气象学报, 1983(4): 393-403.
[18]吕美仲, 彭永清, 1990.动力气象学教程[M].北京: 气象出版社, 83.
[19]裴坤宁, 王磊, 李谢辉, 等, 2019.一次变形场背景下的暴雨位涡诊断研究[J].高原气象, 38(6): 1221-1228.DOI: 10. 7522/j.issn.1000-0534.2019.00021.
[20]冉令坤, 高守亭, 雷霆, 2005.高空急流区内纬向基本气流加速与EP通量的关系[J].大气科学, 29(3): 409-416.
[21]陶诗言, 1959.十年来我国对东亚寒潮的研究[J].气象学报, 30(1): 226-230.
[22]陶祖钰, 郑永光, 2012.位温、等熵位涡与锋和对流层顶的分析方法[J].气象, 38(1): 17-27.
[23]田秀霞, 寿绍文, 2013.2008年12月两次强寒潮过程的等熵位涡分析[J].气象科学, 33(1): 102-108.
[24]童金, 叶金印, 魏凌翔, 2019.江淮地区两次持续性强降雪过程大气环流及低频特征[J].高原气象, 38(4): 845-855.DOI: 10. 7522/j.issn.1000-0534.2018.00118.
[25]王遵娅, 丁一汇, 2006.近53年中国寒潮的变化特征及其可能原因[J].大气科学, 30(6): 14-22.
[26]韦志刚, 朱献, 董文杰, 等, 2019.CFSv2系统对2015年11月中国一次寒潮过程及其欧亚冷空气活动的预报评估[J].高原气象, 38(1): 673-684.DOI: 10.7522/j.issn.1000-0534.2019.00014.
[27]谢安, 卢莹, 陈受钧, 1992.冬季风爆发前西伯利亚高压的演变[J].大气科学, 16(6): 39-47.
[28]谢瑞青, 刘宇迪, 朱金双, 等, 2019.一次极端寒潮天气过程等熵位涡分析[J].气象科技, 47(2): 124-133.
[29]于波, 李桑, 黄富祥, 等, 2019.2016年1月京津冀地区连续性寒潮事件对比分析[J].干旱气象, 37(6): 954-963.
[30]张备, 尹东屏, 孙燕, 等, 2014.一次寒潮过程的多种相态降水机理分析[J].高原气象, 33(1): 190-198.DOI: 10.7522/j.issn. 1000-0534.2012.00171.
[31]张芳丽, 李国平, 罗潇, 2020.四川盆地东北部一次突发性暴雨事件的影响系统分析[J].高原气象, 39(2): 321-332.DOI: 10. 7522/j.issn.1000-0534.2019.00080.
[32]张林梅, 庄晓翠, 胡磊, 2010.新疆阿勒泰地区一次强寒潮天气过程分析[J].干旱气象, 28(1): 71-75.
[33]张培忠, 陈光明, 1999.影响中国寒潮冷高压的统计研究[J].气象学报, 57(4): 494-501.
[34]赵其庚, 1990.一次东亚寒潮过程的等熵位涡分析[J].应用气象学报, 5(4): 392-399.
文章导航

/