论文

青藏高原典型下垫面通量印痕特征分析

  • 王紫昕 ,
  • 仲雷 ,
  • 马耀明 ,
  • 傅云飞
展开
  • 1. 中国科学技术大学地球和空间科学学院,安徽 合肥 230026
    2. 中国科学院比较行星学卓越创新中心,安徽 合肥 230026
    3. 江苏省气候变化协同创新中心,江苏 南京 210023
    4. 中国科学院青藏高原研究所青藏高原地球系统科学国家重点实验室地气作用与气候效应团队,北京 100101
    5. 中国科学院大学地球与行星科学学院,北京 100049
    6. 兰州大学大气科学学院,甘肃 兰州 730000
    7. 西藏珠穆朗玛特殊大气过程与环境变化国家野外科学观测研究站,西藏 定日 858200
    8. 中国科学院加德满都科教中心,北京 100101
    9. 中国科学院中国-巴基斯坦地球科学研究中心,伊斯兰堡 45320

王紫昕(1999 -), 女, 河南许昌人, 硕士研究生, 主要从事青藏高原地气相互作用研究. E-mail:

收稿日期: 2022-06-27

  修回日期: 2022-12-08

  网络出版日期: 2023-09-26

基金资助

青藏高原第二次综合科学考察研究项目(2019QZKK0103); 中国科学院A类战略性先导科技专项(XDA20060101); 国家自然科学基金项目(91837208)

Characteristics of Flux Footprint over Typical Underlying Surface of Qinghai-Xizang Plateau

  • Zixin WANG ,
  • Lei ZHONG ,
  • Yaoming MA ,
  • Yunfei FU
Expand
  • 1. School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,Anhui,China
    2. CAS Center for Excellence in Comparative Planetology,Hefei 230026,Anhui,China
    3. Jiangsu Collaborative Innovation Center for Climate Change,Nanjing 210023,Jiangsu,China
    4. Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China
    5. College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
    6. College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,Gansu,China
    7. Qomolangma Atmospheric and Environmental Observation and Research Station,Tingri 858200,Xizang,China
    8. Kathmandu Center for Research and Education,CAS-TU,Beijing 100101,China
    9. China -Pakistan Joint Research Center on Earth Sciences,Islamabad 45320

Received date: 2022-06-27

  Revised date: 2022-12-08

  Online published: 2023-09-26

摘要

下垫面的非均匀性影响地气通量观测的准确性和代表性, 青藏高原复杂下垫面通量印痕分布的研究对地气相互作用的观测、 模拟及其天气气候影响均具有重要意义。印痕分析是研究通量观测信息空间代表性的重要方法, 通量印痕模型FFP(Flux Footprint Prediction)为计算通量印痕提供了一种行之有效的方法。基于西藏珠穆朗玛大气过程与环境变化国家野外科学观测研究站、 阿里荒漠环境综合观测研究站、 西藏纳木错高寒湖泊与环境国家野外科学观测研究站、 慕士塔格西风带环境综合观测研究站和藏东南高山环境综合观测研究站5个台站2013年观测数据, 利用FFP模型对通量印痕进行了模型参数敏感性分析, 探讨了不同站点通量印痕分布的时空特点、 具体影响因素, 进而对观测台站架设提供指导。研究结果表明, 通量印痕的主要影响因素为观测高度、 风速、 风向, 下垫面类型为常绿针叶林的林芝站对观测高度、 行星边界层高度较其他台站敏感。在青藏高原, 使用三维超声风速仪观测数据得到的通量印痕的空间尺度为250~500 m。5个台站中珠峰站白天稳定层结时次最少, 占白天数据点的15.69%, 阿里站夜间不稳定层结时次最少, 占夜间数据点的13.32%。在青藏高原5个台站夜间通量印痕比白天通量印痕范围更广、 面积更大; 夏季由于季风的影响, 通量印痕轴线更趋向一致; 纳木错站湖陆风是影响通量印痕的主要因素, 珠峰站冰川风是影响通量印痕的主要因素, 林芝站在5个站点中年平均风速最小, 通量印痕最小, 在5个站点中观测代表性最佳。为提高观测数据代表性, 可考虑在珠峰站、 纳木错站降低观测仪器高度。

本文引用格式

王紫昕 , 仲雷 , 马耀明 , 傅云飞 . 青藏高原典型下垫面通量印痕特征分析[J]. 高原气象, 2023 , 42(5) : 1160 -1171 . DOI: 10.7522/j.issn.1000-0534.2022.00107

Abstract

The heterogeneity of the underlying surface affects the accuracy and representativeness of the land-atmosphere flux observation.The study on the flux footprint distribution of complex underlying surface over Qinghai-Xizang Plateau (QXP) is of great significance to the observation and simulation of land-atmosphere interaction and its influence on weather and climate.Flux footprint analysis plays a pivotal role in investigating the spatial representativeness of flux observation information.The Flux Footprint Prediction (FFP) model represents a proficient methodology for computing the flux footprint.Based on the observation data from multiple research stations, including the Qomolangma Atmospheric and Environmental Observation and Research Station, the Ngari Desert Observation and Research Station, the Nam Co Monitoring and Research Station for Multisphere Interactions, the Muztagh Ata Westerly Observation and Research Station, the Southeast Tibet Observation and Research Station for the Alpine Environment in 2013, the FFP model was utilized to investigate the sensitivity of model parameters concerning flux footprint distribution.Additionally, the spatiotemporal characteristics and specific influencing factors of flux footprint distribution at different stations were discussed, thereby providing valuable insights for the erection of future observing stations.The results reveal that the primary determinants of flux footprint are measurement height, wind speed and wind direction.Characterized by an underlying surface of evergreen coniferous forest, flux footprint at Linzhi station exhibits greater sensitivity to measurement height and planetary boundary layer depth compared to the other stations.In the QXP, the spatial extent of the flux footprint derived from the ultrasonic anemometer measurements ranges from approximately 250 m to 500 m.Among the five stations, Qomo station exhibited the lowest frequency of stable stratification times during daytime, representing 15.69% of the daytime data points, whereas Ali station had the lowest occurrence of unstable stratification times during nighttime, comprising for 13.32% of the nighttime data points.At these five stations on the TP, the nocturnal flux footprints demonstrate greater width and extent compared to their daytime counterparts.In summer, due to the influence of monsoon, the axis of flux footprint tends to be more consistent.Lake-land breeze at Nam Co station is the main factor affecting flux footprint, whereas glacier wind at Qomo station is the dominant factor.Linzhi station possesses the smallest footprint due to the smallest mean wind speed, thus demonstrating the highest level of representativeness among these five stations.Lowering the height of observation instruments at Qomo and Nam Co stations could potentially enhance the representativeness of in situ measurements.

参考文献

null
Chen B Z Coops N C Fu D, et al, 2012.Characterizing spatial representativeness of flux tower eddy-covariance measurements across the Canadian Carbon Program Network using remote sensing and footprint analysis[J].Remote Sensing of Environment, 124: 742-755.
null
Chu H S Baldocchi D D Poindexter C, et al, 2018.Temporal dynamics of aerodynamic canopy height derived from eddy covariance momentum flux data across North American Flux Networks[J].Geophysical Research Letters45(17), 9275–9287.
null
Chu H S Luo X Z Ouyang Z T, et al, 2021.Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites[J].Agricultural and Forest Meteorology, 301-302.
null
Hargrove W W Hoffman F M Law B E2003.New analysis reveals representativeness of the AmeriFlux network[J].Eos, Transactions American Geophysical Union84 (48): 529-535.
null
Heidbach K Seibert H P Mauder M2017.Experimental evaluation of flux footprint models[J].Agricultural and Forest Meteorology, 246: 142-153.
null
Kljun N Calanca P Rotach M W, et al, 2004.A simple parameterisation for flux footprint predictions[J].Boundary-Layer Meteorology112 (3): 503-523.
null
Kljun N Calanca P Rotach M W, et al, 2015.A simple two-dimensional parameterization for Flux Footprint Prediction(FFP)[J].Geoscientific Model Development Discussions8 (11): 3695-3713.
null
Ma Y M Hu Z Y Xie Z P, et al, 2020.A long-term(2005-2016)dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau[J].Earth System Science Data12 (4): 2937-2957.
null
Ma Y M Wang Y J Wu R S, et al, 2009.Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau[J].Hydrology and Earth System Sciences13 (7): 1103-1111.
null
Nozaki K Y1973.Mixing depth model using hourly surface observations[R].USAF Environmental Technical Applications Center, Report 7053.
null
Pasquill F Smith F B1983.Atmospheric Diffusion[M].UK: West Sussex Press, 142.
null
Schmid H P2002.Footprint modeling for vegetation atmosphere exchange studies: a review and perspective[J].Agricultural and Forest Meteorology113 (1-4): 159-183.
null
Schuepp P H Leclerc M Y MacPherson J I, et al, 1990.Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation[J].Boundary-Layer Meteorology50(1-4): 355-373.
null
Seibert P Beyrich F Gryning S E, et al, 2000.Review and intercomparison of operational methods for the determination of the mixing height[J].Atmospheric Environment34(7): 1001-1027.
null
Sogachev A Lloyd J2004.Using a One-And-a-Half Order Closure Model of the atmospheric boundary layer for surface flux footprint estimation[J] Boundary-Layer Meteorology112(3): 467-502.
null
Steinfeld G Raasch S Markkanen T2008.Footprints in homogeneously and heterogeneously driven boundary layers derived from a Lagrangian stochastic particle model embedded into large-eddy simulation[J].Boundary-Layer Meteorology129(2): 225-248.
null
Xu F N Wang W Z Wang J M, et al, 2019.Aggregation of area-averaged evapotranspiration over the Ejina Oasis based on a flux matrix and footprint analysis[J].Journal of Hydrology, 575: 17-30.
null
蔡旭晖, 2008.湍流微气象观测的印痕分析方法及其应用拓展[J].大气科学32(1): 123-132.
null
蔡旭晖, 邹青青, 郭梦婷, 等, 2018.大气环境监测结果空间代表性的一个分析实例[J].环境科学学报38(6): 2279-2286.
null
龚元, 赵敏, 姚鑫, 等, 2017.基于Hsieh和Kljun模型的城市生态系统碳通量贡献区分析与对比[J].环境工程技术学报7(2): 225-231.
null
赖欣, 范广洲, 华维, 等, 2021.青藏高原陆气相互作用对东亚区域气候影响的研究进展[J].高原气象40(6): 1263-1277.DOI: 10.7522/j.issn.1000-0534.2021.zk018 .
null
马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006 .
null
彭谷亮, 刘绍民, 蔡旭晖, 等, 2008.非均匀下垫面湍流通量观测的印痕分析[J].大气科学32(5): 1064-1070.
null
王介民, 1999.陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J].高原气象18(3): 280-294.
null
王介民, 2021.面积平均通量与光闪烁方法[J].高原气象40(6): 1377-1393.DOI: 10.7522/j.issn.1000-0534.2021.zk017 .
null
王宇轩, 奥银焕, 李照国, 等, 2021.黑河中下游不同类型下垫面的能量收支差异及其成因研究[J].高原气象40(3): 495-509.DOI: 10.7522/j.issn.1000-0534.2020.00100 .
null
徐春萌, 蔡旭晖, 宋宇, 2015.淮河流域重点城市大气污染源区特征的印痕分析[J].北京大学学报(自然科学版)51(5): 812-820.
null
游庆龙, 康世昌, 李潮流, 等, 2007.青藏高原纳木错气象要素变化特征[J].气象33(3): 54-60.
null
张志刚, 秦翔, 何立富, 等, 2011.2007年5-6月珠峰北坡不同高度气象要素特征分析[J].气象37(8): 977-983.
文章导航

/