[1]Mansell E R, MacGorman D R, Ziegler C L. Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J]. J Geophys Res, 2005, 110: D12100-D12101.
[2]Khain A R, Pokrovsky D A.Aerosol impact on the dynamics and microphysics of deep convective clouds[J]. Quart J Roy Meteoro Soc, 2005, 131: 2639-2663.
[3]杨慧玲, 肖辉, 洪延超. 气溶胶对冰雹云物理特性影响的数值模拟研究[J]. 高原气象, 2011,30(2): 445-460.
[4]岳治国, 刘晓东, 梁谷. 气溶胶对北京地区不同类型云降水影响的数值模拟[J]. 高原气象, 2011,30(5): 1356-1367.
[5]Segal Y M, Pinsky A K. The role of competition effect in the raindrop formation[J]. Atmos Res, 2007, 83: 106-118.
[6]张杰,唐从国.干旱区一次春季沙尘过程的大气气溶胶垂直分布结构及其特征[J]. 高原气象, 2012, 31(1): 156-166.
[7]宿兴涛, 王汉杰, 宋帅, 等. 近10年东亚沙尘气溶胶辐射强迫与温度响应[J].高原气象, 2011, 30(5): 1300-1307.
[8]Simpson G, Scrase F G. The distribution of electricity in thunderstorm[J]. Proceedings of the Royal Society of London Series A, 1937, 161: 309-352.
[9]Simpson G, Robinson F G. The distribution of electricity in thunderclouds[J]. Proceedings of the Royal Society of London Series A, 1941, 177: 281-329.
[10]Chiu Chinshan. Numerical study of cloud electrification in an axisym-metric, time-dependent cloud model[J]. J Geophys Res, 1978, 83: 5025-5049.
[11]张廷龙, 言穆弘, 张彤, 等. 利用地面电场对中川地区一次雷暴过程电荷结构的研究[J]. 高原气象, 2010,29(6): 1524-1532.
[12]廖向花, 周毓荃, 唐余学, 等. 重庆一次超级单体风暴的综合分析[J]. 高原气象, 2010,29(6): 1556-1564.
[13]巩敏莹, 靳英燕. 西北区东部一次雷暴天气过程的诊断分析[J]. 高原气象, 2009,28(1): 203-208.
[14]Takahashi T. Thunderstorm electrification—A numerical study [J]. J Atmos Sci, 1984, 41: 2541-2558.
[15]言穆弘, 刘欣生, 安学敏,等. 雷暴非感应起电机制的模拟研究. I. 云内因子影响[J]. 高原气象, 1996, 15(4): 425-437.
[16]言穆弘, 刘欣生, 安学敏,等. 雷暴非感应起电机制的模拟研究. Ⅱ. 环境因子影响[J]. 高原气象, 1996, l5(4): 438-447.
[17]Rawlins F. A numerical study of thunderstorm electrification using a 3D model incorporating the ice phase [J]. Quart J Roy Meteor Soc, 1981, 108: 779-800.
[18]郭凤霞, 张义军, 郄秀书, 等. 雷暴云不同空间电荷结构数值模拟研究[J]. 高原气象, 2003, 22 (3): 268-274.
[19]Mansell E R, MacGorman D R, Ziegler C L. Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J]. J Geophys Res, 2005, 110: D12100-D12101.
[20]Williams E R,Rosenfeld D, Madden N, et al. Contrasting convective regimes over the Amazon: Implications for cloud electrification[J]. J Geophys Res, 2002,107(D20), 8082. doi:10.1029/2001JD000380.
[21]谭涌波. 闪电放电与雷暴云电荷、 电位分布相互关系的数值模拟[D]. 合肥: 中国科学技术大学, 2006.
[22]刘校辰, 刘奇俊. 云模式中气溶胶物理过程参数化方案研究概述[J]. 气象, 2006, 32(6): 4-6.
[23]Ziegler C L,MacGorman D R, Dye J E, et al.A model evaluation of non-inductive graupel-ice charging in the early electrification of a mountain thunderstorm[J].J Geophys Res, 1991, 96(D7): 12833-12855.
[24]Pereyra R G,Avila E E, Catellano N E, et al.A laboratory study of graupel charging[J]. J Geophys Res,2000, 105: 20803-20812.
[25]Gardiner B D, Lamb R L, Pitter J, et al. Measurements of initial potential gradient and particle charges in a montana summer thunderstorm[J]. J Geophys Res, 1985, 90(D4): 6079-6086.
[26]Hallett J, Saunders C P R. Charge separation associated with secondary ice crystal production[J]. J Atmos Sci, 1979,36(11): 2230-2235.
[27]Leporini M, Wobrock, Flossmann A I. Simulations of stratocumuli clouds with warm detailed microphysics[C]. Proceedings of the International Conference on Clouds and Precipitation, Bologna, Italy, 18-23 July, 2004.
[28]Meszaros E. Present status of our knowledge on the atmospheric condensation nuclei:Problems of cloud physics[J]. Gidrometeorzdat, 1978,34: 157-170.
[29]Khain A. Notesonthestate-of-artmumericalmodelingofcloudmicrophysics[J]. Atmos Res, 2000, 55: 159-224.
[30]Pruppacher H R, Klett J D. Microphysics of clouds and precipitation[C]. Proceedings of the International Conference on Clouds and Precipitation, Bologna, Italy, 18-23 July, 2004.
[31]Twomey S.The nuclei of natural coud formation.PartⅡ: The supersaturation in natural clouds and the variation of cloud droplet concentration[J]. Geophys Pura Appl, 1959, 43: 243-249.
[32]刘校辰. 气溶胶对暖云影响的数值模拟[D]. 北京: 中国气象科学研究院, 2006.
[33]Khain A et al. Notes on the state of art numerical modeling of cloud microphysics[J]. Atoms Res, 2000, 55: 159-224.
[34]Yin Y, Levin Z, Reisin T G, et al. Tzivion: The effect of giant cloud condensation nuclei on the development of precipitation in convective clouds\_\_A numerical study[J]. Atmos Res, 2000, 53: 91-116.
[35]Yin Y Z, Levin T, Reisin S, et al. Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics[J]. Appl Meteor, 2000, 39: 1460-1472.
[36]Kogan Y L. The simulation of a convective cloud in a 3-D model with explicit microphysics. Part Ⅰ: Model description and sensitivity experiments[J]. J Atmos Sci, 1991, 48: 1160-1189.
[37]Cohard J M, Jean P P. A comprehensive two-moment warm microphysical bulk scheme 1:description[J]. Meteor Soc, 2000, 126: 1815-1842.