Please wait a minute...
Adv search
Plateau Meteorology  2019, Vol. 38 Issue (5): 1069-1081    DOI: 10.7522/j.issn.1000-0534.2018.00134
    
The Wind Shear Exponent in the Near-Surface Strong Wind in the Coastal Areas of Jiangsu Province
CHEN Yan1, ZHANG Ning2, XU Xiazhen1, CHEN Bin1, MAI Miao1, SUN Jiali1
1. Jangsu Climate Center, Nanjing 210008, Jiangsu, China;
2. China Meteorological Administration-Nanjing University Joint Laboratory for Climate Prediction Studies/Institute for Climate and Global Change Research/School of Atmospheric Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
Download:  HTML  PDF (14528KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to study the characteristics of wind shear exponent under strong wind conditions of Jiangsu Province, the long sequences(from June 1st 2009 to Nov. 30th 2012, continuous 42 months), high time resolution(every 10 minutes)gradient wind speed, wind direction, temperature, pressure of 5 wind towers along the coast area are used to analyze the relationship between wind speed and altitude, the time variation of wind shear exponent and the variation law with wind speed. The 7 typhoons and 17 cold wave weather processes with great influence on Jiangsu were selected, and the variation characteristics of wind shear exponent under strong wind conditions were analyzed. The results showed that:(1) The exponential law is well fitted to the vertical variation of wind speed along the coast of Jiangsu Province. The wind shear exponent varies between 0.15 and 0.26 in different surface environments. The wind shear exponent between cut-in speed and cut-out speed of the wind turbine is 0.20, and it is 0.19 when the wind speed of 70 m is 15 m·s-1. The wind shear exponent decreases with increasing height and decreases logarithmically with increasing wind speed. (2) Due to the strong vertical mixing motion caused by the typhoon, the wind shear exponent becomes smaller, with an average of 0.19. When the typhoon center passes, the wind shear exponent and wind speed have an M-shaped variation of increasing-subtracting-re-increasing, with a minimum of 0.05, and the wind direction changes drastically, which is easy to damage the fan blades. (3) The wind shear exponent when the cold wave is affected is 0.22 on average, which is less than the average value of the same period. The wind speed inversion phenomenon is obvious, the probability between 50 m and 100 m exceeds 8%, and the maximum wind speed in the near-surface layer is prone to occur at a height of 50 m.
Key words:  Wind shear exponent      typhoon      cold wave      near-surface layer     
Received:  17 August 2018      Published:  17 October 2019
ZTFLH:  P425.1  

Cite this article: 

CHEN Yan, ZHANG Ning, XU Xiazhen, CHEN Bin, MAI Miao, SUN Jiali. The Wind Shear Exponent in the Near-Surface Strong Wind in the Coastal Areas of Jiangsu Province. Plateau Meteorology, 2019, 38(5): 1069-1081.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2018.00134     OR     http://www.gyqx.ac.cn/EN/Y2019/V38/I5/1069

Powell M D, Vickery P J, Reinhold T A, 2003. Reduced drag coefficients for high wind speeds in tropical cyclones[J]. Nature, 422:279-283.
Rehman S, Al-Abbadi N M, 2007. Wind shear coefficients and energy yield for Dhahran, Saudi Arabia[J]. Renewable Energy, 32(5):738-749.
敖雪, 翟晴飞, 崔妍, 等, 2018. 三种风场再分析资料在辽宁省海岸带的比较与评估[J]. 高原气象, 37(1):275-285. DOI:10.7522/j.issn.1000-0534.2017.00029.
陈燕, 许遐祯, 黄敬峰, 等, 2017. ENVISAT星载合成孔径雷达反演风场在江苏近海风场研究中的应用初探[J]. 高原气象, 36(3):852-864. DOI:10.7522/j.issn.1000-0534.2016.00052.
董双林, 李林藩, 1996. 风速垂直切变统计分析[J]. 中国空间科学技术(2):14-22.
付德义, 薛扬, 边伟, 等, 2018. 风切变指数对于风电机组载荷特性影响研究[J]. 太阳能学报, 39(5):1380-1387.
符平, 秦鹏飞, 张金接, 2014. 海上风资源时空特性研究[J]. 中国水利水电科学研究院学报, 12(2):155-161.
龚强, 汪宏宇, 朱玲, 等, 2015. 辽宁省近地层风切变特征研究[J]. 自然资源学报, 30(9):1560-1569.
龚玺, 朱蓉, 范广洲, 等, 2014. 内蒙古草原近地层垂直风速廓线的观测研究[J]. 气象学报, 72(4):711-722.
黄继章, 范绍佳, 宋丽莉, 等, 2009. 广东博贺近海海面的一次冷空气过程强风特征分析[J]. 热带气象学报, 25(5):635-640.
金莉莉, 李振杰, 缪启龙, 等, 2016. 乌鲁木齐市近地层风切变指数特征[J]. 沙漠与绿洲气象, 10(4):81-86.
雷杨娜, 孙娴, 张侠, 等, 2015. 陕北黄土高原复杂地形风速廓线特性[J]. 可再生能源, 33(9):1345-1350.
李雁, 梁海河, 王曙东, 等, 2012. 基于中国风能资源专业观测网的近地层风切变日变化特征[J]. 自然资源学报, 27(8):1362-1372.
李雁, 裴翀, 郭亚田, 等, 2010. 中国风能资源专业观测网运行监控系统建设及应用[J]. 资源科学, 32(9):1679-1684.
廖明夫, 徐可, 吴斌, 等, 2008. 风切变对风力机功率的影响[J]. 沈阳工业大学学报, 30(2):163-167.
刘敏, 孙杰, 杨宏青, 等, 2010. 湖北不同地形条件下风随高度变化研究[J]. 气象, 36(4):63-67.
马惠群, 曲宁, 李超, 等, 2012. 风电场风切变指数研究[J]. 电网与清洁能源, 28(6):88-96.
彭怀午, 冯长青, 包紫光, 2010. 风资源评价中风切变指数的研究[J]. 可再生能源, 28(1):21-28.
史军, 徐家良, 穆海振, 2017. 上海近海海上最大风速的估算及数值模拟[J]. 太阳能学报, 38(4):991-998.
申华羽, 吴息, 谢今范, 等, 2009. 近地层风能参数随高度分布的推算方法研究[J]. 气象, 35(7):54-60.
宋丽莉, 毛慧琴, 汤海燕, 等, 2004. 广东沿海近地层大风特性的观测分析[J]. 热带气象学报, 20(6):731-736.
孙川永, 陶树旺, 罗勇, 等, 2009. 海陆风及沿海风速廓线在风电场风速预报中的应用[J]. 地球物理学报, 52(3):630-636.
万定祥, 陈宁, 彭军, 等, 2015. ZQZ-TF型风向传感器电路剖析及维修方法[J]. 气象科技, 13(1):168-171.
王海霞, 张宏升, 李云峰, 等, 2013. 上海浦东国际机场低层大气垂直风场特征研究[J]. 气象, 39(11):1500-1506.
王志春, 植石群, 2014. 登陆台风启德近地层强风特性观测研究[J]. 气象科技, 42(4):678-681.
王志春, 植石群, 丁凌云, 2013. 强台风纳沙(1117)近地层风特性观测分析[J]. 应用气象学报, 24(5):595-605.
吴增茂, 孙士才, 1995. 近海工程环境应用中各种风资料的平均时间分析[J]. 海岸工程, 14(3):8-12.
徐宝清, 吴婷婷, 李文慧, 2014. 风资源评估中风切变指数的研究[J]. 电力科学与工程, 30(7):73-78.
许向春, 辛吉武, 邢旭煌, 等, 2013. 琼州海峡南岸近地面层大风观测分析[J]. 热带气象学报, 29(3):481-488.
张双益, 胡非, 2017. 大气边界层与风力发电的相互作用研究综述[J]. 高原气象, 36(4):1127-137. DOI:10.7522/j.issn.1000-0534.2016.00095.
赵德山, 王立治, 洪钟祥, 1982. 冷锋过境时的边界层阵风结构分析[J]. 大气科学, 6(3):324-332.
植石群, 钱光明, 罗金铃, 2001. 广东沿海风随高度变化研究[J]. 热带地理, 21(2):131-134.
中国气象局, 2014. 热带气旋年鉴2012[M]. 北京:气象出版社, 88-156.
中华人民共和国国家质量监督检验检疫总局, 2002. GB/T 18710-2002风电场风能资源评估方法[S]. 北京:中国标准出版社, 1-19.
中华人民共和国住房和城乡建设部, 2012. GB 50009-2012建筑结构荷载规范[S]. 北京:中国建筑工业出版社, 1-246.
周波, 龚华军, 甄子洋, 2012. 风切变和塔影效应对风力机变桨距控制的影响分析[J]. 可再生能源, 30(1):27-32.
[1] LI Yi-lin, XU Yuan, QIAN Wei-hong . Dry and Wet Climatic Changes of Western China in Recent 300 Years [J]. PLATEAU METEOROLOGY, 2003, 22(4): 371 -377 .
[2] Ma Zhuguo. A PRELIMINARY ANALYSIS FOR THE RELATIONSHIP BETWEEN THE ANOMALIES OF SOIL TEMPERATURE AND EITHER OF FLOODS IN THE YANGTSE-HUAI RIVER REACHES AND STRONG DROUGHT IN SOUTH OF YANGTSE RIVER IN SUMMER OF 1991[J]. PLATEAU METEOROLOGY, 1995, 14(2): 185 -191 .
[3] SUN Genhou, HU Zeyong, WANG Jiemin, LIU Huolin, XIE Zhipeng, LIN Yun, HUANG Fangfang. Comparison Analysis of Sensible Heat Fluxes at Two Spatial Scales in Naqu Area[J]. PLATEAU METEOROLOGY, 2016, 35(2): 285 -296 .
[4] . Correlation Analysis and Statistical Prediction of AbnormalCold/Warm in the Southwestern Region of China Spring[J]. PLATEAU METEOROLOGY, 2009, 28(2): 425 -432 .
[5] OUYANG Lin, YANG Kun, QIN Jun, WANG Yan, LU Hui. Advances and Perspectives in Precipitation Research for Himalayan Mountains[J]. PLATEAU METEOROLOGY, 2017, 36(5): 1165 -1175 .
[6] ZHAO Yafang, ZHANG Ning, CHEN Yan, ZHU Yan. Long-term Analysis of Urban Heat Island using Remote Sensing Data in Lake Tai Basin[J]. PLATEAU METEOROLOGY, 2017, 36(5): 1394 -1403 .
[7] GAO Na, GAO Xiaoqing, YANG Liwei, ZHOU Ya. Spatial and Temporal Characteristics of Soil Temperature at 1.6 m Depth in Mainland of China from 1981 to 2000[J]. PLATEAU METEOROLOGY, 2016, 35(3): 685 -692 .
[8] LI Zhe, WANG Lei, WANG Lin, LI Xiehui, XIAO Guojie. Top-Layer Soil Moisture Retrieval over the Qinghai-Xizang Plateau in Summer Based on AMSR-E Data[J]. PLATEAU METEOROLOGY, 2017, 36(1): 67 -78 .
[9] ZHAO Dajun, YAO Xiuping. Case Study on Shape Evolution of Plateau Shear Line: Structural Characteristics[J]. PLATEAU METEOROLOGY, 2018, 37(2): 420 -431 .