Please wait a minute...
Adv search
Plateau Meteorology  2019, Vol. 38 Issue (2): 237-252    DOI: 10.7522/j.issn.1000-0534.2018.00079
    
Surface Diabatic Heating Mode of the Qinghai-Tibetan Plateau and Its Relationship with the Anomalous Circulation in Northern China
YU Han1,2, ZHANG Jie1, LIU Shimeng1,3
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
2. Liaoyang Meterological Bureau, Liaoyang 111000, Liaoning, China;
3. Climate center of Inner Mongolia autonomous region, Hohhot 010000, Inner Mongolia, China
Download:  HTML  PDF (35614KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the estimation of the surface heat transfer coefficient and the effective surface radiation under the EOF analysis of the Qinghai-Tibetan Plateau (QTP), the surface diabatic heating data of the QTP were calculated since 2000, and the diabatic heating data from 1958 to 2013 were reconstructed. The surface diabatic heating index of the QTP was obtained, which is used to indicate the surface thermal conditions for different climatic regions of QTP. According to the results of EOF, the QTP was divided into four climatic regions. The effects of QTP on the circulation anomalies in the northern China from the perspective of the propagation of wave energy were analyzed. The following conclusions were obtained:the surface diabatic heating index in the western edge of QTP (regionⅠ)has a weak increasing trend, except for winter with a slight decline trend. The surface diabatic heating index in the mid-west hinterland of QTP (regionⅡ) is decreasing in all seasons. The surface diabatic heating index in the northeast of the QTP (region Ⅲ) has a weak increasing trend, except for winter with a slight decline trend. However, the surface diabatic heating index in the southeast of QTP (region Ⅳ) shows a declining tendency in all seasons. The high altitude is a wave energy divergence area of QTP at 200 hPa, when the surface diabatic heating index with abnormal increasing in the western edge of QTP. The enhancement of wave energy convergence of northern China in early summer benefits to the precipitation, which weakened drought. However, the wave energy divergence in northern China in midsummer, which makes more drought. When the surface diabatic heating index anomalies increase in the northeast of QTP, there is an energy divergence area at high altitude as well. Whether in early summer or midsummer, convergence in northern China will contribute to weakening the drought. However, divergence will appear in the northeast of China and drought will be intensified. These conclusions provides a reference for the understanding of the spatial and temporal distribution of surface diabatic heating of QTP, which effects on the anomalous circulation in northern China.
Key words:  Qinghai-Tibetan Plateau      surface diabatic heating index      anomalous circulation in northern China      wave train     
Received:  06 July 2018      Published:  22 April 2019
ZTFLH:  P404  
Articles by authors
YU Han
ZHANG Jie
LIU Shimeng

Cite this article: 

YU Han, ZHANG Jie, LIU Shimeng. Surface Diabatic Heating Mode of the Qinghai-Tibetan Plateau and Its Relationship with the Anomalous Circulation in Northern China. Plateau Meteorology, 2019, 38(2): 237-252.

URL: 

http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2018.00079     OR     http://www.gyqx.ac.cn/EN/Y2019/V38/I2/237

Dai A, 2011. Erratum:Drought under global warming:a review[J]. Wiley Interdisciplinary Reviews Climate Change, 2(1):45-65.
Duan A, Li F, Wang M, et al, 2011. Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian Summer Monsoon[J]. Journal of Climate, 24(21):5671-5682.
Duan A, Liu Y, Wu G, 2005. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer[J]. Scientia Sinica Terrae, 48(2):250-257.
Duan A, Wu G, 2009. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades[J]. Journal of Climate, 22(15):5691.
Niu T, Chen L, Zhou Z, 2004. The characteristics of climate change over the Tibetan Plateau the last 40 years and the detection of climatic jumps[J]. Advances in Atmospheric Sciences, 21(2):193-203.
Park C K, Schubert S D, 1997. On the nature of the 1994 East Asian summer drought.[J]. Journal of Climate, 10(10):1056-1070.
Wang B, Bao Q, Hoskins B, et al, 2008. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophysical Research Letters, 35(14):63-72.
Wu G, Zhang Y, 1998. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea[J]. Monthly Weather Review, 126(126):913-927.
Yang K, Guo X F, Wu B Y, 2011. Recent trends in surface sensible heat flux on the Tibetan Plateau[J]. Science China Earth Sciences, 54(1):19-28.
You Q, Kang S, Pepin N, 2010. Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset[J]. Global Planet Change, 72(1):11-24.
Zhang J, Jiang Y, Chen H S, et al, 2018a. Double-mode adjustment of Tibetan Plateau heating to the summer circumglobal teleconnection in the Northern Hemisphere[J]. International Journal of Climatology, 38(2). dio:10.1002/joc. 5201.
Zhang J, Laurent L, Wu Z W, et al, 2015. Prolonged dry spells in recent decades over north-central China and their association with a northward shift in planetary waves[J]. International Journal of Climatology, 35:4829-4842.
Zhang J, Liu C, Chen H, 2018b. The modulation of Tibetan Plateau heating on the multi-scale northernmost margin activity of East Asia summer monsoon in northern China[J]. Global Planet Change, 161:149-161.
Zhang Y C, Kuang X Y, Guo W D, et al, 2006. Seasonal evolution of the upper-tropospheric westerly jet core over East Asia[J]. Geophysical Research Letters, 33 (11):L11708, doi:10.1029/2006GL026377.
Zhang, J, Tang Q, Chen H S, et al, 2017. Northward shift in circulation system over the Asian mid-latitudes linked to an increasing heating anomaly over the northern Tibetan Plateau during the past two decades[J]. International Journal of Climatology, online(2):834-848.
Zhu X Y, Liu Y M, Wu G X, 2012. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets[J]. Science China Earth Sciences, 55(5):779-786.
贲海荣, 周顺武, 乔钰, 等, 2017. 一个新的青藏高原热力指数的构建及其应用[J]. 高原气象, 36(6):1487-1498. DOI:10.7522/j. issn. 1000-0534.2017.00009.
蔡雯悦, 徐祥德, 孙绩华, 2012. 青藏高原东南部云状况与地表能量收支结构[J]. 气象学报, 70(4):837-846.
丁婷, 陈丽娟, 崔大海, 2015. 东北夏季降水的年代际特征及环流变化[J]. 高原气象, 34(1):220-229. DOI:10.7522/j. issn. 1000-0534.2013.00155.
符淙斌, 温刚, 2002. 中国北方干旱化的几个问题[J]. 气候与环境研究, 7(1):22-29.
高世仰, 2017a. 青藏高原非均匀下垫面的感热估算及其时空分布特征[D]. 南京:南京信息工程大学.
高世仰, 张杰, 罗琦, 2017b. 青藏高原非均匀下垫面热力输送系数的估算[J]. 高原气象, 36(3):596-609. DOI:10.7522/j. issn. 1000-0534.2016.00060.
郭恒, 张庆云, 2016. 北方雨季中国东部降水异常模态的环流特征及成因分析[J]. 大气科学, 40 (5):946-964. DOI:10.3878/j. issn. 1006-9895.1510.15218.
何金海, 2011. 青藏高原大气热源特征及其影响和可能机制[M]. 北京:气象出版社.
胡实, 莫兴国, 林忠辉, 2015. 未来气候情景下我国北方地区干旱时空变化趋势[J]. 干旱区地理(汉文版), 38(2):239-248.
黄荣辉, 刘永, 冯涛, 2013.20世纪90年代末中国东部夏季降水和环流的年代际变化特征及其内动力成因[J]. 科学通报, (8):617-628. DOI:10.1007/s11434-012-5545-9.
季国良, 江灏, 吕兰芝, 1995. 青藏高原的长波辐射特征[J]. 高原气象, 14(4):451-458.
江志红, 何金海, 李建平, 等, 2006. 东亚夏季风推进过程的气候特征及其年代际变化[J]. 地理学报, 61(7):675-686.
蒋兴文, 李跃清, 2010. 青藏高原地表辐射的气候特征[J]. 资源科学, 32(10):1932-1942.
解晋, 余晔, 刘川, 等, 2018. 青藏高原地表感热通量变化特征及其对气候变化的响应[J]. 高原气象, 37(1):28-42. DOI:10.7522/j. issn. 1000-0534.2017.00019.
柯丹, 管兆勇, 2014. 华中地区夏季区域性极端日降水事件的降水特征及环流异常[C]//北京:中国气象学会年会.
李佰平, 智协飞, 2012. ECMWF模式地面气温预报的四种误差订正方法的比较研究[J]. 气象, 38(8):897-902.
李栋梁, 何金海, 汤绪, 等, 2007. 青藏高原地面加热场强度与ENSO循环的关系[J]. 高原气象, 26(1):39-46.
李栋梁, 魏丽, 李维京, 等, 2003. 青藏高原地面感热对北半球大气环流和中国气候异常的影响[J]. 气候与环境研究, 8(1):60-70.
李茂松, 李森, 李育慧, 2003. 中国近50年旱灾灾情分析[J]. 中国农业气象, 24(1):7-10.
李新周, 马柱国, 刘晓东, 2006. 中国北方干旱化年代际特征与大气环流的关系[J]. 大气科学, 30(2):277-284.
刘新, 李伟平, 许晃雄, 等, 2007. 青藏高原加热对东亚地区夏季降水的影响[J]. 高原气象, 26(6):1287-1292.
刘新, 吴国雄, 刘屹岷, 等, 2002. 青藏高原加热与亚洲环流季节变化和夏季风爆发[J]. 大气科学, 26(6):781-783.
刘扬, 韦志刚, 李振朝, 等, 2012. 中国北方地区降水变化的分区研究[J]. 高原气象, 31(3):638-645.
梅士龙, 管兆勇, 2008. 对流层上层斜压波包活动与2003年江淮流域梅雨的关系[J]. 大气科学, 32(6):107-114.
梅士龙, 管兆勇, 2009.1998年长江中下游梅雨期间对流层上层斜压波包的传播[J]. 热带气象学报, 25(3):300-306.
王晓芳, 何金海, 廉毅, 2013. 前期西太平洋暖池热含量异常对中国东北地区夏季降水的影响[J]. 气象学报, 71(2):305-317.
王学佳, 杨梅学, 万国宁, 2013. 近60年青藏高原地区地面感热通量的时空演变特征[J]. 高原气象, 32(6):1557-1567. DOI:10.7522/j. issn. 1000-0534.2012.00151.
吴国雄, 刘新, 张琼, 等, 2002. 青藏高原抬升加热气候效应研究的新进展[J]. 气候与环境研究, 7(2):184-201.
吴国雄, 刘屹岷, 刘新, 等, 2005. 青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学, 29(1):47-56.
叶笃正, 1979. 青藏高原气象学[M]. 北京:科学出版社.
于涵, 张杰, 刘诗梦, 2018. 基于CERES卫星资料的青藏高原有效辐射变化规律[J]. 高原气象, 37(1):106-122. DOI:10.7522/j. issn. 1000-0534.2017.00045.
于琳琳, 陈海山, 2012. 青藏高原4月陆面状况和地表加热异常与中国夏季降水的联系[J]. 高原气象, 31(5):1173-1182.
张红丽, 张强, 刘骞, 等, 2016. 中国南方和北方气候干燥程度的变化特征及差异性分析[J]. 高原气象, 35(5):1339-1351. DOI:10.7522/j. issn. 1000-0534.2015.00099
张景阳, 潘光友, 2013. 多元线性回归与BP神经网络预测模型对比与运用研究[J]. 昆明理工大学学报(自然科学版), (6):61-67.
张盈盈, 李忠贤, 刘伯奇, 2015. 春季青藏高原表面感热加热的年际变化特征及其对印度夏季风爆发时间的影响[J]. 大气科学, 39(6):1059-1072.
赵天保, 符淙斌, 2006. 中国区域ERA-40、NCEP-2再分析资料与观测资料的初步比较与分析[J]. 气候与环境研究, 11(1):14-32.
郑旭程, 陈海山, 2012. 全球春、夏陆面热力状况变化特征:NCEP/NCAR与ERA40再分析资料的比较[J]. 大气科学学报, 35(1):41-50.
钟海玲, 李栋梁, 魏丽, 2004. 我国北方春季沙尘暴的异常及其对冬季青藏高原地面感热的响应[J]. 中国沙漠, 24(3):323-329.
周娟, 文军, 王欣, 等, 2017. 青藏高原季风演变及其与土壤湿度的相关分析[J]. 高原气象, 36(1):45-56. DOI:10.7522/j. issn. 1000-0534.2016.00003.
周秀骥, 赵平, 陈军明, 等, 2009. 青藏高原热力作用对北半球气候影响的研究[J]. 中国科学(地球科学), 39(11):1473-1486.
[1] . Preliminary Theoretical Study of Waves in theTibetan Plateau Vortex[J]. PLATEAU METEOROLOGY, 2011, 30(3): 553 -558 .
[2] LUO Bu;ZHUO Ga;CHI Qu. Moistening Effect Analyses in Tibet in Recent Several Decades[J]. PLATEAU METEOROLOGY, 2009, 28(1): 72 -76 .
[3] . Simulation Study on Microphysical Process of Freezing-RainEvent in Southern China during the Early 2008[J]. PLATEAU METEOROLOGY, 2011, 30(4): 942 -950 .
[4] . Global, China-Mongolia Arid- and Semiarid\|Areas (CMASA) andthe Details of Precipitation Distribution in Part Regions of CMASA[J]. PLATEAU METEOROLOGY, 2011, 30(1): 1 -12 .
[5] SHEN Zhen-xing-;HUO Zong-quan;HAN Yue-mei;CAO Jun-ji;ZHAO Jing-lian;ZHANG Ting. Chemical Composition of Water-Soluble Ions in Aerosolsover Xi′an in Heating and Non-Heating Seasons[J]. PLATEAU METEOROLOGY, 2009, 28(1): 151 -158 .
[6] . [J]. PLATEAU METEOROLOGY, 2010, 29(3): 637 -644 .
[7] . [J]. PLATEAU METEOROLOGY, 2010, 29(2): 268 -277 .
[8] . [J]. PLATEAU METEOROLOGY, 2010, 29(2): 514 -522 .
[9] . Observation Study on Precipitation Mechanism ofStratiform Warm Cloud in Ningxia in Summer[J]. PLATEAU METEOROLOGY, 2011, 30(2): 471 -481 .
[10] . Variation Characteristics of Radiation Budget and Its Component
in the Eastern Qinghai-Xizang Plateau
[J]. PLATEAU METEOROLOGY, 2013, 32(2): 327 .