Existence of Periodic Orbits about Quasi-Geostrophic Model on Three Waves

  • LIU Chun ,
  • LIU Sibo ,
  • LI Xiumei ,
  • ZHANG Chunhui ,
  • LENG Lidong
Expand
  • Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu, 610072, China;2. Neijiang Meteorological Bureau, Neijiang 641000, China;3. Chengdu University of Information Technology, Chengdu 610225, China;4. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;5. Meishan Meteorological Bureau, Meishan 620020, China

Received date: 2013-10-16

  Online published: 2015-12-28

Abstract

When dimension n≥3, the existence, nonexistence, uniqueness and stability of periodic orbits of dynamical systems, in the theory and application, are worthy of study. in the two-dimensional dynamical systems, the basic tools of study the existence of periodic orbits is Poincar-Bendixson and its corollary (ring zone principle).However, The counter example of D. Heedene display that Poincar-Bendixson has not been simply popularized in the high dimensional case. Thus, over the years, studying the existence of periodic orbits in the dynamical systems, mainly rely on the ring zone principle. To the quasi-geostrophic model in the action of the three waves, the simple pattern of exogenous, turbulent friction has been more mature, but there is less study about it is cyclical behavior. Furthermore, homoclinic orbit and heteroclinic orbit are associated with solitary wave and the vortex, and homoclinic orbit and heteroclinic orbit at rail cross-sectional intersect is the condition of chaos, also the key to study the certainty and randomness. The combination of certainty and randomness is the main methods that quasi-geostrophic model explaining the turbulent structure. So, homoclinic orbit and heteroclinic orbit are very important to the periodic and stability of quasi-geostrophic model. Through analyzing, we discover that the nonlinear has a form of three-dimensional- Hamilton, induced by the main structure-Jacobi of the quasi-geostrophic model in the action of three-wave, so the article study the topological nature of the model based on Poincar-Bendixson. Meanwhile, in view of the importance of the quasi-geostrophic model for the structure of turbulence, homoclinic orbit and heteroclinic orbit that the balance point of the four saddle pattern corresponding to were analyzed. The analysis revealed that the presence of four different homoclinic (heteroclinic) orbit as well as the center for each type of balance exist in a column corresponding periodic orbits around the center on the Poisson symplectic leaf surface. Having a discussion about a special class of perturbations of the situation and the system of central periodic orbit perturbations near the equilibrium point, people are able to access to the conditions of the original three-wave quasi-geostrophic model of periodic solutions exist.

Cite this article

LIU Chun , LIU Sibo , LI Xiumei , ZHANG Chunhui , LENG Lidong . Existence of Periodic Orbits about Quasi-Geostrophic Model on Three Waves[J]. Plateau Meteorology, 2015 , 34(6) : 1805 -1811 . DOI: 10.7522/j.issn.1000-0534.2014.00066

References

[1]曾庆存. 数值天气预报的数学物理基础[M]. 北京: 科学出版社, 1979.
[2]穆穆. 两维准地转运动的非线性稳定性判据[J]. 自然科学进展: 自然科学版, 1991, 19(3): 269-273.
[3]伍荣生. 准地转演变过程中的多时态特征[J]. 中国科学(A辑), 1981, 3: 351-357.
[4]丑纪范. 大气科学中的非线性与复杂性[M]. 北京: 气象出版社, 2002.
[5]丑纪范. 大气动力学的新进展[M]. 兰州: 兰州大学出版社, 1990.
[6]黄海洋, 郭柏灵. 大尺度大气方程组解和吸引子的存在性[J]. 中国科学(D辑), 2006, 36(4): 392-400.
[7]李继彬, 赵晓华, 刘正荣. 广义哈密顿系统理论及其应用[M]. 北京: 科学出版社, 2007.
[8]何光碧, 屠妮妮, 张利红, 等. 青藏高原东侧一次低涡暴雨过程地形影响的数值试验[J]. 高原气象, 2013, 32 (6): 1546-1556, doi: 10.7522/j.issn.1000-0534.2012.00150.
[9]杨琴, 田文寿, 隆霄, 等. 青藏高原沙尘示踪物从对流层向平流层传输的数值模拟[J]. 高原气象, 2014, 33(4): 887-899, doi: 10.7522/j.issn.1000-0534.2013.00095.
[10]Robinson R C. An Introduction Dynamical Systems: Continiuous and Discrete[M]. Washington: American Mathematical Soc, 2012.
[11]Shilnikov L P, Shilnikov A L, Turaev D V, 等著, 金成桴译. 非线性动力学定性理论方法[M].北京: 高等教育出版社, 2010.
[12]梁玲, 李跃清, 胡豪然, 等. 青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J]. 高原气象, 2013, 32(6): 1538-1545, doi: 10.7522/j.issn.1000-0534.2013.00028.
[13]姜学恭, 李夏子, 李彰俊, 等. 一次阻塞型华北对流性暴雨过程的诊断分析和数值模拟[J]. 高原气象, 2012, 31(5): 1283-1294.
[14]何由, 阳坤, 姚檀栋, 等. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象, 2012, 31 (5): 1183-1191.
[15]刘式达, 刘式适. 孤波和湍流[M]. 上海: 上海科技教育出版社, 1994.
[16]朱抱真. 大气和海洋的非线性动力学概论[M]. 北京: 海洋出版社, 1991.
[17]谢志辉, 丑纪范. 大气动力学方程组全局分析的研究进展[J]. 地球科学进展, 1999, 14(2): 133-139.
[18]李建平, 丑纪范. 大气动力学方程组的定性理论及其应用[J]. 大气科学, 1998, 22(4): 443-453.
[19]李建平, 丑纪范. 非线性大气动力学的进展[J].大气科学, 2003, 27(4): 653-673.
[20]刘春, 刘思波, 李秀梅, 等. 大气动力学方程谱模态系统的拓扑结构[J]. 高原气象, 2015, 34(6): 1797-1804, doi: 10.7522/j.issn.1000-0534.2014.00065.
[21]李娜, 刘永明. 二维准地转流的非线性稳定性及扰动发展[J]. 华东师范大学学报: 自然科学版, 2005(1): 16-22.
[22]李炳熙. 高维动力系统的周期轨道: 理论和应用[M]. 上海: 上海科学技术出版社, 1984.
[23]胡隐樵. 大气热力动力学导论[M]. 北京: 地质出版社, 2002.
[24]高普云. 非线性动力学-分叉、 混沌与孤立子[M]. 长沙: 国防科技大学出版社, 2005.
[25]Vickroy J G, Dutton J A. Bifurcation and catastrophe in a simple, forced, dissipative quasi-geostrophic flow[J]. J Atmos Sci, 1979, 36(1): 42-52.
[26]Mitchil K E, Dutton J A. Bifurcation from stationary to periodic solutions in a low-order model of forced, dissiptive barotrophic flow[J]. J Atmos Sci, 1981, 38(4): 690-716.
[27]姚妙新, 陈芳启. 非线性理论数学基础[M]. 天津: 天津大学版社, 2001.
[28]王洪礼, 张琪昌, 郭树起, 等. 非线性动力学理论及应用[M]. 天津: 天津科学技术出版社, 2007.
Outlines

/