Sensitivity Analysis of Multi-Source Observations in WRF-ADAS Rapid Refresh System

  • WANG Xiaofeng ,
  • WANG Ping ,
  • ZHANG Lei ,
  • LI Jia ,
  • XU Xiaolin
Expand
  • Shanghai Typhoon Institute of China Meteorological Administration, Shanghai 200030, China;Key Laboratory of Numerical Modeling for Tropical Cyclone of China Meteorological Administration, Shanghai 200030, China;Innovative Center of Regional High Resolution Numerical Weather Prediction, Shanghai 200030, China

Received date: 2015-02-04

  Online published: 2017-02-28

Abstract

Using SMS-WARR system with rapid refresh technique, the sensitivity of three different types of observational data (Doppler radar reflectivity, radiosonde, AMDAR) to the numerical simulation of the severe convection event was analyzed.The impacts of these three different types of observations were discussed through a numerical simulation of a server convection event, which occurred in Shanghai on July 31 2011.Results showed that assimilating radar data was helpful for adjusting model initial hydrometer distributions, the simulated distribution of cloud was reasonable, the structure and intensity of the mesoscale convection system was adjusted to some extent, and the forecasted rainfall location and intensity were also improved.Although only one time piece of the radiosonde data was assimilated during the whole simulation cycle, the impact of radiosonde data assimilation on the model forecasting still can be kept and maintained for a long time.Results showed that the simulated height and wind fields at 500 hPa, 700 hPa and 850 hPa were improved after radiosonde data assimilation.Correspondingly, the simulated surface temperature was also improved.Results from AMDAR data assimilation experiment showed that the location and strength of synoptic situation are more close to the observations and the rainfall forecast was improved.

Cite this article

WANG Xiaofeng , WANG Ping , ZHANG Lei , LI Jia , XU Xiaolin . Sensitivity Analysis of Multi-Source Observations in WRF-ADAS Rapid Refresh System[J]. Plateau Meteorology, 2017 , 36(1) : 148 -161 . DOI: 10.7522/j.issn.1000-0534.2016.00018

References

[1]Frank W M, Ritchie E A.1999.Effects on environmental flow upon tropical cyclone structure.Mon.Wea.Rev, 127:2044-2069.
[2]Frank W M, Ritchie E A.2001.Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes.Mon.Wea.Rev, 129:2249-2269.
[3]Hu M, Xue M, Gao J, et al.2006.3DVAR and cloud analysis with WSR-88D level-Ⅱ data for the prediction of the Fort Worth, Texas, tornadic thunderstorms.Part Ⅱ:Impact of radial velocity analysis via 3DVAR[J].Mon Wea Rev, 134(2):699-721.
[4]Hu M, Xue M, Brewster K.2006.3DVAR and cloud analysis with WSR-88D level-Ⅱ data for the prediction of the Fort Worth, Texas, tornadic thunderstorms.Part Ⅰ:Cloud analysis and its impact[J].Mon Wea Rev, 134(2):675-698.
[5]Nicholas A, Gasperini, Ming Xue, et al.2013.Sensitivity of convective initiation prediction to near-surface moisture when assimilating radar refractivity:impact tests using 0SSEs[J].J Atmos Ocean Tech, 30(10):2281-2302.
[6]Wilson J W.2011.Precipitation nowcasting:Past, present and future[C]//6th International Symposium on Hydrological Applications of Weather Radar.
[7]Chen Baode, Wang Xiaofeng, Li Hong, et al.2013.An overview of the key techniques in rapid refresh assimilation and forecast[J].Adv Meteor Sci Technol, 3(2):29-35.<br/>陈葆德, 王晓峰, 李泓, 等.2013.快速更新同化预报的关键技术综述[J].气象科技进展, 3(2):29-35.
[8]Huang Yanyan, Wan Qilin, Chen Zitong, et al.2011.Experiment of using dense observation data of sounding balloon in rainstorm forecast over South China[J].J Trop Meteor, 27(2):179-188.<br/>黄燕燕, 万齐林, 陈子通, 等.2011.加密探空资料在华南暴雨数值预报的应用试验[J].热带气象学报, 27(2):179-188.
[9]Huang Zhuo, Li Yanxiang, Wang Hui, et al.2006.Application of AMDAR data to weather forecast[J].Meteor Mon, 32(9):42-48.<br/>黄卓, 李延香, 王慧, 等.2006.AMDAR资料在天气预报中的应用[J].气象, 32(9):42-48.
[10]Liang Ke, Wan Qilin, Ding Weiyu, et al.2007.The application of assimilated aircraft data in simulating the heavy rain over South China in June 2005[J].J Trop Meteor, 23(4):313-325.<br/>梁科, 万齐林, 丁伟钰, 等.2007.飞机报资料在0506华南致灾暴雨过程模拟中的应用[J].热带气象学报, 23(4):313-325.
[11]Shu Shoujuan, Wang Yuan, Song Jinjie.2011.Observational analysis of the structure of Typhoon Haitang (0505) over the western North Pacific by using the GPS Dropsonde data[J].Acta Meteor Sinica, 69(6):933-944.<br/>舒守娟, 王元, 宋金杰.2011.西北太平洋台风"海棠"结构的GPS下投式探空仪观测分析[J].气象学报, 69(6):933-944.
[12]Wang Suichan, Hu Xiangjun, Zhang Xinrong, et al.2011.Application of doppler radar data assimilation in a local rainstorm case in Gansu province[J].Plateau Meteor, 30(3):711-718.<br/>王遂缠, 胡向军, 张新荣, 等.2011.雷达资料同化在甘肃局地暴雨天气个例中的应用[J].高原气象, 30(3):711-718.
[13]Wang Xiaofeng, Wang Ping, Zhang Lei, et al.2015.Numerical simulation of '7·31' severe convection event in Shanghai using rapid refresh technique[J].Plateau Meteor, 34(1):124-136.Doi:10.7522/j.issn.1000-0534.2013.00202.<br/>王晓峰, 王平, 张蕾, 等.2015.上海"7·31"局地强对流快速更新同化数值模拟研究[J].高原气象, 34(1):124-136.
[14]Wang Xiaofeng, Xu Xiaolin, Zhang Lei, et al.2014.Observation analysis of local severe convection event in Shanghai on 31 July 2011[J].Plateau Meteor, 33(6):1627-1639.Doi:10.7522/j.issn.1000-0534.2013.00204.<br/>王晓峰, 许晓林, 张蕾, 等.2014.上海"0731"局地强对流观测分析[J].高原气象, 33(6):1627-1639.
[15]Yin Dongping, Wu Haiying, Zhang Bei, et al.2010.Analysis on a severe convective weather triggered sea breeze front[J].Plateau Meteor, 29(5):1261-1269.<br/>尹东屏, 吴海英, 张备, 等.2010.一次海风锋触发的强对流天气分析[J].高原气象, 29(5):1261-1269.
[16]Zhang Feimin, Wang Chenhai.2014.Experiment of surface-layer wind forecast improvement by assimilating conventional data with WRF-3DVAR[J].Plateau Meteor, 33(3):675-685.Doi:10.7522/j.issn.1000-0534.2012.00198.<br/>张飞民, 王澄海.2014.利用WRF-3DVAR同化常规观测资料对近地层风速预报的改进试验[J].高原气象, 33(3):675-685.
[17]Zhang Lihong, Jiang Lijuan, Chen Zhaoping, et al.2009.Assimilation experiment of sounding data on the rainfall in Southwest China[J].Plateau and Mountain Meteorology Research, 29(3):31-38.<br/>张利红, 蒋丽娟, 陈朝平, 等.2009.探空观测资料在西南暴雨中的同化试验[J].高原山地气象研究, 29(3):31-38.
Outlines

/